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The intrinsic oscillatory activity of central pattern generators underlies motor

rhythm. We review and discuss recent findings that address the origin

of Caenorhabditis elegans motor rhythm. These studies propose that the

A- and mid-body B-class excitatory motor neurons at the ventral cord func-

tion as non-bursting intrinsic oscillators to underlie body undulation

during reversal and forward movements, respectively. Proprioception

entrains their intrinsic activities, allows phase-coupling between members

of the same class motor neurons, and thereby facilitates directional propa-

gation of undulations. Distinct pools of premotor interneurons project

along the ventral nerve cord to innervate all members of the A- and B-class

motor neurons, modulating their oscillations, as well as promoting their

bi-directional coupling. The two motor sub-circuits, which consist of oscil-

lators and descending inputs with distinct properties, form the structural

base of dynamic rhythmicity and flexible partition of the forward and back-

ward motor states. These results contribute to a continuous effort to establish

a mechanistic and dynamic model of the C. elegans sensorimotor system.

C. elegans exhibits rich sensorimotor functions despite a small neuron

number. These findings implicate a circuit-level functional compression. By

integrating the role of rhythm generation and proprioception into motor

neurons, and the role of descending regulation of oscillators into premotor

interneurons, this numerically simple nervous system can achieve a circuit

infrastructure analogous to that of anatomically complex systems. C. elegans
has manifested itself as a compact model to search for general principles of

sensorimotor behaviours.

This article is part of a discussion meeting issue ‘Connectome to behaviour:

modelling C. elegans at cellular resolution’.

1. Origin and regulation of motor rhythms
Neurons and neural circuits with intrinsic oscillatory activities underlie rhyth-

micity of motor behaviours, from respiration, heartbeat, gastric motility to

locomotion [1–5]. In the absence of rhythmic inputs from the descending

neural networks or sensory organs, isolated vertebrate spinal cords, and their

invertebrate counterpart, the ventral nerve cords, retain a capacity to generate

rhythmic and patterned motor neuron activity or fictive locomotion [6–10].

Hence oscillators for locomotory activities reside within the spinal or ventral

nerve cords, where premotor interneurons form local circuits with excitatory

motor neurons to orchestrate motor outputs [1,2,11].

Selective recruitment, modulation and coordination of locomotory oscillators

constitute the form and transit between different motor patterns. This process is

regulated at multiple levels. Within the spinal cords of rodents and fish, distinct
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pools of spinal premotor interneurons play dedicated roles in

rhythm generation and pattern coordination. Different modes

of movements correlate with selective recruitment of excita-

tory and inhibitory premotor interneuron groups [1,12].

Mechanosensory interneurons provide local proprioceptive

and sensory feedbacks to the spinal premotor interneurons

[13–17]. While excitatory premotor interneurons are generally

considered to originate the rhythm, motor neurons are integral

components of the oscillatory output. In the crayfish and leech

swimmerets, the Caenorhabditis elegans and Drosophila larva

motor circuit, as well as the zebrafish spinal cord, motor neur-

ons that receive mixed electric and chemical synaptic inputs

can retrogradely affect the activity of premotor interneurons

[18–22]. Lastly, the oscillatory activities of local central pattern

generators (CPGs) are regulated by descending inputs from the

brain, via synaptic and neuromodulatory pathways, for

initiation, reconfiguration and coordination. For example, in

the lamprey and rodents, pools of interneurons of the retinosp-

inal region or the brainstem project into the spinal cord, and

their activities can either turn on or shut down different

motor patterns [23–26].
0

2. CPGs for body bending reside in the
C. elegans ventral nerve cord

Despite a deep understanding of anatomy [27–31] and theor-

etical studies [32–34], direct experimental evidence that

addresses the potential existence and identity of C. elegans
CPGs has been lacking. Obtaining a mechanistic understand-

ing of the C. elegans motor rhythm has been difficult. Our

progress has been hindered by the technical difficulty of

in situ C. elegans electrophysiology experiments [35], and

mystified by the membrane physiology of C. elegans neurons,

which lack voltage-gated sodium currents, and with an excep-

tion [36], do not appear to fire action potentials [37]. Its

anatomical organization of the nervous system also seems to

be unconventional: unlike most spinal and ventral nerve

cords, where premotor interneurons and motor neurons

co-reside, only the soma of motor neurons, of both the excit-

atory and inhibitory classes, occupy the C. elegans ventral

cord. Among them, the A- and some B-class excitatory motor

neurons are main executors of body undulation during back-

ward and forward movement, respectively. Recent studies

reveal that these motor neurons function as the respective

CPGs for backward and forward movements [38–40].

The A-class motor neurons exhibited intrinsic oscillatory

activities (figure 1a) that were sufficient to execute slow back-

ward movements without premotor interneurons (figure 1b).

After the removal of all premotor interneuron inputs, the

A-class excitatory motor neurons continued to generate oscil-

latory and phase-coupled activities (figure 1b) that triggered

rhythmic action potential bursts in body wall muscles

(figure 1a). Robust calcium oscillation maintained in posterior

A-class motor neurons even when chemical synaptic trans-

mission was further eliminated from the entire nervous

system in this preparation (figure 1a). Selective ablation of a

subgroup of the A-class motor neurons led to disruption of

local bending, but did not inhibit rhythmic bending in neigh-

bouring body segments [39] (figure 2a). These results suggest

that the A-class motor neurons can function as non-bursting

oscillators to drive body bending and to generate backward

movements (figure 1b).
The B-class motor neurons also exhibit oscillatory activi-

ties, but with more restricted capacities. The mid-body

B-class motor neurons exhibited oscillation when activated

by the electric synaptic inputs from premotor interneurons

projecting along the ventral nerve cord [40]. The oscillation

of mid-body B-class motor neurons was observed when

chemical synaptic transmission of the entire nervous system

was eliminated (figure 3a).

A plethora of sodium, calcium and potassium channels

underlie a CPG’s intrinsic membrane potential oscillations

[42,43]. UNC-2, the C. elegans orthologue of the P/Q/N-type

high-voltage-activated calcium channel, is one of the com-

ponents [39]. The reduction and gain of UNC-2 conductance

in the A-class motor neurons led to a decrease and increase,

respectively, of the amplitude and frequency of muscle rPSC

bursting (figure 4a) and their calcium oscillation (figure 4b).

These effects were observed in the absence of premotor

interneurons (figure 4a,b).

Whether UNC-2-mediated calcium conductance also

underlies the B-class motor neuron oscillation has not been

addressed, but indirect evidence supports this notion. Animals

with reduced UNC-2 activity exhibited reduced velocity

during both forward and backward movements (figure 5a).

In the absence of A-class motor neurons, animals with

increased UNC-2 activity continued to exhibit increased for-

ward velocity (figure 5b). High-voltage-activated calcium

conductance probably represents a conserved, endogenous

constituent of the membrane intrinsic oscillation. In isolated

lamprey spinal neuron soma, the N-type calcium currents

prominently potentiate bursting, and are coupled with the

burst-terminating calcium-activated potassium currents

[44,45]; the intrinsic, high-frequency gamma band oscillation

in the rat pedunculopontine nucleus requires the N- and/or

P/Q-type calcium currents [46–48].

The complete channel composition of C. elegans oscillators

awaits further dissection. Future work should also address

mechanisms that underlie the difference between the high

and low intrinsic activities of the A- and B-class motor neurons.

The involvement of other ventral cord motor neurons in

rhythm generation requires further investigation. The D-class

GABAergic motor neurons modulate, but are not necessary

for, body bending [39,40,49], arguing against them being

CPGs. The perturbation of AS, another class cholinergic and

excitatory motor neurons, affects both forward and backward

movement; whether they harbour intrinsic oscillatory activity

is unknown [50].
3. Proprioception entrains and coordinates CPG-
driven body undulation

Proprioception is a prominent modulator of CPG’s oscillatory

properties [14,51]. Mechanisms must be in place to coordinate

CPGs’ activities distributed along the C. elegans body to form

a cohesive propagating bending wave [34].

During forward movements in microfluidic devices, local

and directional proprioceptive coupling between the adjacent

body regions plays a critical role in the propagation of undula-

tion [40,41]. When the mid-body region was trapped in a

microfluidic channel with a defined curvature, the unrest-

rained posterior body region exhibited the same curvature in

the same direction (figure 3b). When dynamic curvature

change was imposed with a pneumatic microfluidic device,

http://rstb.royalsocietypublishing.org/
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Figure 1. An integrative model for backward locomotion: local reversal oscillators are phase-coupled via proprioception, and dually regulated by descending inputs.
(a) The A-class motor neurons exhibit intrinsic, oscillatory activities that are sufficient to drive backward movement. (Top panel) Calcium oscillation in the posterior A
motor neuron was observed in animals where chemical synaptic transmission and all premotor interneurons were removed from the nervous system. Left, sample
traces; right, raster plot of recording from multiple animals. (Bottom panel) A dissected ventral cord muscle preparation from an animal where all premotor inter-
neurons were removed exhibited anterior A-class motor-dependent rhythmic postsynaptic currents (rPSCs) and action potential (AP) bursts, both denoted by red
arrowheads. (b) The A-class motor neurons may use intrinsic proprioceptive properties to self-organize phase-coupling during backward movement. (Top panels) A
comparison of calcium activities exhibited by posterior A-class motor neurons in an immobilized (left) and a freely moving (reversal) animal (right), where all
premotor interneurons were removed from the nervous system. Movements strengthened both calcium oscillation of and phase-coupling among A-class motor
neurons. (c) The AVA premotor interneurons provide descending inputs that dually regulate the A-class motor neuron’s oscillation through a mixed gap junction
and chemical synapse configuration. Gap-junction-mediated coupling between AVA and A-class motor neurons shunts their intrinsic oscillation, whereas chemical
synapses allow optogenetically activated AVA to potentiate their oscillation. (d ) A model: backward movement is driven by oscillation from a chain of distributed
CPGs (the A-class motor neurons), phase-coupled by proprioceptive feedback and regulated by descending inputs. Figure panels adapted from [39,53].
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rapid curvature changes and bending waves followed in the

posterior body [41] (figure 3b).

Whereas no dedicated local sensory neurons exist in the

ventral nerve cord, the B-class motor neurons are found

to transduce the bend-sensitive signals during forward

movements. When a body segment was compelled to bend
towards the dorsal side, the dorsal muscle-innervating

B-class motor neuron sustained a higher level of intracellular

calcium activity than the ventral muscle-innervating B-class,

and vice versa during ventral bending [41]. The bend-

sensitivity of B-class motor neurons allows the curvature

change in an anterior body to define the curvature of the

http://rstb.royalsocietypublishing.org/
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anteriorly propagating bending waves in the unrestrained anterior and posterior segment with different frequencies, as shown in a series of video frames
(left), and by kymograph of time-varying curvature along the body (right) where vertical lines mark the anterior and posterior limits of the straight channel.
Panel (a) adapted from [39]. See Materials and Methods.
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posterior neighbour, facilitating the propagation of bending

waves from head to tail.

Optogenetic experiments reveal that proprioception

entrains the B-class motor neuron’s oscillation. When pro-

prioceptive signal from the most anterior body region

was eliminated by either optogenetically inhibiting the head

muscles or anterior B-type motor neurons, the mid-body gener-

ated rhythmic bending activity, with a higher frequency than

normal undulation [38,40] (figure 3c). Hence, the B-class

motor neurons situated in the anterior and posterior body

region may operate at different intrinsic frequencies, but direc-

tional proprioceptive coupling entrains their activities to

generate coherent body undulation (figure 3c,d).

Whether and how proprioception regulates backward

movements requires further examination. Several lines of

indirect evidence support the notion of proprioceptive

entrainment and coupling of reversal CPGs. When all

premotor interneurons and B-class motor neurons were

removed, animals continued to exhibit slow but organized,

anteriorly propagating body undulation, as well as phase-

coupled calcium oscillation of multiple A-class motor neurons

[39] (figure 1b). This contrasted the case when these animals

were glued down, in which the A-class motor neurons exhib-

ited less robust or coordinated calcium oscillation [39]

(figure 1b). Sparse ablation of a small number of the A-class
motor neurons only blocked local body bending ([39]

(figure 2a). When the mid-body was constrained by a straight

microfluidic channel, the unconstrained anterior and posterior

body regions continued to exhibit undulation at different

frequencies (figure 2b). These observations imply that the A-

class motor neurons are also proprioceptive, and use

proprioception for self-organized phase-coupling (figure 1d ).

Proprioceptive coupling probably plays a critical role for

phase-locked coherent bending during both directional move-

ments, but the forward and reversal circuit may incorporate

such an ingredient differently. Most B-class motor neurons,

with low intrinsic oscillatory activity, may rely strongly on pro-

prioception for sequential activation during propagation.

Multiple A-class motor neurons, with higher intrinsically oscil-

latory activities, may mainly use their proprioceptive property

to self-organize a cohesive wave during propagation.
4. Descending pathways by the projection-
premotor interneurons control movements

C. elegans ventral cord excitatory motor neurons integrate

roles of rhythm generation and proprioception to organize

and execute body undulations. Consistent with the A- and

B-class motor neurons exhibiting differences in their intrinsic

http://rstb.royalsocietypublishing.org/
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activities, the projection-premotor interneurons use different

strategies to modulate their activities.

The B-class motor neurons exhibit a low level of intrinsic

oscillatory activities compared with the A-class motor

neurons [39]. The AVB premotor interneurons project along

the ventral cord to form gap junctions with all B-class motor

neurons. These electrical couplings allow depolarized AVB to

trigger the bifurcation of mid-body B-class motor neurons’

oscillatory activities to promote forward movement [40]

(figure 3c). The A-class motor neurons, by contrast, have intrin-

sically high level of activities. The premotor interneurons AVA

project along the ventral nerve cord to form both gap junctions

and chemical synapses with all A-class motor neurons [28,52].

Their electrical couplings shunt the A-class motor neurons’

intrinsic oscillation, reducing the propensity of spontaneous

reversals [39,53] (figure 1c,d). However, when AVA were stimu-

lated to overcome the shunting effect, depolarized AVAs

would potentiate the A-class motor neuron oscillation through

chemical and electrical synapses to sustain long reversals

[39,53,54] (figure 1c,d).
The interplay between the two descending pathways partly

explains how C. elegans executes the two distinct motor pro-

grammes (figures 1d and 3d) with an inherent bias for

forward movement [40,53] (figure 6). By shunting the reversal

CPGs through electric coupling with the AVA premotor inter-

neurons, animals favour forward movement by default.

Upon depolarization, the AVA premotor interneurons potenti-

ate A-class motor neurons to sustain backward movements.

Upon hyperpolarization, they use electrical synapses to facili-

tate efficient inhibition of all A-class motor neuron activities

[39,53]. Similarly, the depolarization and hyperpolarization

of the AVB premotor interneurons could potentiate and halt

forward locomotion, respectively, through their electrical

coupling with the B-class motor neurons [40].

Bi-directional couplings between the descending pathways

to and between excitatory motor neurons can have additional

physiological implications. The ablation of the projection-

premotor interneurons and, specifically, genetic ablation of

their gap junction input to excitatory motor neurons lead to

kink, a motor state in which the forward and backward circuit

http://rstb.royalsocietypublishing.org/
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fails to establish the usual imbalance in their activity output

[39,53]. The weakly rectifying electrical couplings between

the AVA premotor interneurons and A-class motor neurons

[55] may allow activated motor neurons to antidromically

amplify the excitatory chemical synaptic inputs from AVA,
prolonging evoked reversals [55]. Gap junction coupling

between the AVB interneurons and B-class motor neurons

[28,52] may similarly enable retrograde regulation of the

dynamics of AVB, subsequently modulating the coupling of

multiple B-motor neurons [40].
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distribution by animals of respective genotypes. Positive and negative values refer to forward and backward movements, respectively. (b) Forward velocity continued
to exhibit an increase after the A-class motor neurons were ablated in unc-2(gf ) animals, shown as the histogram of velocity distribution. Both lines of evidence
support the idea that UNC-2 activity directly affects the forward circuit.
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Figure 6. Schematics of a model of C. elegans locomotion as dynamic coupling of multiple motor states. (a) Head oscillation and body undulation are separately
controlled. Descending inputs and directional phase-couplings allow distributed local oscillators to drive body undulation during forward and backward locomotion,
respectively. A mutually inhibitory motif is introduced to flexibly control the two motor programme sub-circuits. Head – body undulation can be bi-directionally
coupled with the forward or backward body undulation to generate different motor programmes. (b) The spatial layout of descending projection-premotor
interneurons, local motor neuron CPGs and proprioceptive couplings between motor neurons for body undulation that drive forward and backward movements.
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In fish and rodents, dedicated reticulospinal neurons pro-

ject from the brain stem to the spinal cord, where they

innervate either excitatory or inhibitory spinal premotor inter-

neurons. Activating those that innervate excitatory spinal

premotor interneurons can initiate locomotion [23,25,56,57],

whereas activating those that innervate inhibitory spinal pre-

motor interneurons can terminate locomotion [24]. In the

C. elegans motor circuit, premotor neurons project along the

ventral nerve cord to innervate excitatory ventral cord motor

neurons, and can both facilitate and halt movements. Hence,

functionally, C. elegans premotor interneurons more closely

resemble the projection neurons in more motor circuits.
 il.Trans.R.Soc.B
373:20170370
5. Towards a full mechanistic and computational
model of C. elegans locomotion

There have been continuous efforts to model C. elegans
locomotion [33,34,58–61]. Cohen and colleagues [32,62,63]

developed proprioceptive coupling models for bending wave

undulation, providing insights into gait adaptation [64–66].

Recently, Olivares and co-workers [32] constructed a CPG

model based on local network motifs along the ventral nerve

cord; however, proposed biophysical mechanisms only partly

agree with available experimental data; caveats remain that

the direction of proposed CPG coupling is opposite to what

has been discussed above.

With a mechanistic dissection of the oscillators and their

regulation for forward and backward locomotion, we can aim

for a phenomenological model with minimum assumptions

and parameters that recapitulates in vivo neuromuscular activi-

ties and locomotory behaviours in a changing environment.

Models may be developed at different levels of abstraction,

guided by the principle of Occam’s razor. New modelling

ingredients are only added when they are required to explain

experimental observations and to generate testable predictions.

Here, we propose to integrate local oscillators, pro-

prioceptive feedback, descending inputs and neuromuscular

dynamics to define the computational algorithms for generation

of undulations, and their posterior- and anterior-directed propa-

gation during backward and forward movements, respectively

(figures 1d, 3d and 6b). Roles of other motor neurons, such as the

GABAergic D-class motor neurons, which facilitate contra-

lateral inhibition, and the AS-class motor neurons, should

be incorporated in the model. Some progress has been made

to characterize the forward movements [40,41], but much

work remains, and no efforts have been made for the backward

movements. While multiple CPG models can serve as the base

to model A- and B-class motor neuron oscillations, we must

first obtain further experimental dissection of their intrinsic

membrane conductance, through a combination of calcium-

and voltage-imaging, electrophysiological recordings and

molecular genetic analyses of candidate channel mutants.

Models for other motor primitives, including head oscil-

lation, head casting and body turning [58,67–70] may be

similarly constructed. With an understanding of individual

modules, we are better positioned to use the connectome [28]

as a road map to model how they are coordinated, such as

the interaction between head oscillation and body undulation

during forward and backward movements (figure 6a).

During C. elegans sensorimotor transformation, a rapid segre-

gation from sensory to motor representation may occur in orafter

the first-layer interneurons [68,71–76]. Recurrent connections
between local interneurons and projection (premotor) inter-

neurons are prominent in the C. elegans connectome [28]. These

connections underlie the rich and organized dynamics that

dictate selection and transition between different motor states.

Deciphering the computation that interneurons collectively

perform remains a major task. Tackling this problem requires

identifying function motifs between interneurons, defining

the input–output function of each neuron and probing

the dynamics of synaptic plasticity of their connections through

experimental and computational approaches. Dynamical

systems theory may provide insights into constructing

experimentally testable models. The premise is that such

models can be developed with rigour and completeness,

ultimately connecting the motor control algorithms and their

implementation through ion channels, synapses and neurons.
6. Towards a comparative approach for general
principles for circuit architecture

Previous studies have revealed cellular and molecular features

that seem to place C. elegans at odds with other animal models.

In most locomotory networks, premotor interneurons and

motor neurons exhibit rhythmic action potential bursts,

but most C. elegans neurons, premotor interneurons and

motor neurons included, do not fire classic action potentials

[37,55,71,77,78].

While the C. elegans motor neurons exhibit the property of

non-bursting oscillators, the C. elegans body wall muscles gen-

erate L-type voltage-gated calcium-current-dependent action

potentials [79–82]. Optogenetic activation of either premotor

interneurons or A-class motor neurons triggered rhythmic

action potential bursts in body wall muscles [39,54]. These

results indicate that the C. elegans locomotory network can

achieve motor rhythmicity through a combined oscillatory

and bursting property of motor neurons and muscles. In the

absence of voltage-activated sodium channels, high-voltage-

activated calcium channels take on the deterministic roles in

the rhythmic output of neural circuits.

These results unveil a simplified, but functionally homolo-

gous motor circuit infrastructure for C. elegans: the body wall

muscles convert graded synaptic transmission to digital signal-

ling through their bursting property; the ventral cord motor

neurons integrate the role of rhythm generation and proprio-

ception; the premotor interneurons play the role of projection

interneurons to activate, halt or reconfigure CPGs.

Taken together, functional compression occurs at the numeri-

cally constrained C. elegans motor circuit: a single neuron or

neuron class assumesthe role of multiple layers of the microcircuit

of the spinal and ventral nerve cords. Such a property allows a

small nervous system to serve as compact models to dissect

organizational logic of neural circuits, exemplified by the example

of intricate roles of the conserved, mix synapse configuration

at the invertebrate nerve and vertebrate spinal cords.
7. Materials and Methods
Figure 2b. A young wildtype (N2) adult C. elegans was loaded

into a microfluidic device filled with the NGM media. The

mid-body of the worm was trapped by a straight channel

(around � 200 mm). This animal attempted spontaneous for-

ward and backward locomotion that was distinguished by

the bending waves exhibited by its head and tail. Body

http://rstb.royalsocietypublishing.org/
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curvature of the worm was analysed and visualized with

custom-written MATLAB script as described in [41].

Figure 5(a). We recorded 1-day old wildtype (N2), unc-

2(lf ) (CB55 unc-2(eff )) and unc-2(gf) (ZM9040 unc-

2(hp647)) adults during spontaneous and free crawling on

thinly seeded OP50 plates, and quantified their bending cur-

vature and velocities. Recordings and analysis were carried

out as described in [39,53]. (b) Locomotor behaviours of unc-

2(gf) animals with and without the A-class motor neurons

were recorded using ZM7819 (unc-2(hp647); hpIs366) 1-day

old adults. To ablate the A-class motor neurons, ZM7819 L1

stage larva cultured on standard NGM plates were exposed

to the blue LED light for 40 minutes with lids open. Animals

were allowed to recover in darkness and grew to 24 h post-L4

stages before recording. After recording, each adult were

mounted to a wide-field compound fluorescent microscope

to examine whether all A-class motor neurons had been

ablated. Only data obtained from animals where all A-class

motor neurons were ablated were used for quantification.

Non-LED light exposed ZM7819 L1 larva were cultured and
imaged in parallel. They were considered the ‘wildtype’ con-

trol. hpIs366 is an integrated transgenic array that expresses

mitochondria-targetted miniSOG in the A-class (and a few

other) neurons. Detailed description of hpIs366 construction,

neuron ablation, behaviral recording, and velocity analyses

were described in [39].
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