C. elegans neurons have functional dendritic spines

Tracking no: 24-04-2019-TR-eLife-47918R1

Impact statement: *Caenorhabditis elegans* has *bona fide* dendritic spines, suggesting that the advantages of small model organisms, (1) genetic manipulations and (2) live-cell imaging, can be exploited to study dendritic spines.

Competing interests: No competing interests declared

Author contributions:
David Miller III: Conceptualization; Supervision; Funding acquisition; Project administration; Writing—review and editing

Funding:
HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS): David M Miller III, R01NS081259; HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS): David M Miller III, R01NS106951; American Heart Association (AHA): Andrea Cuentas-Condori, 18PRE33960581; National Science Foundation (NSF): Sierra Palumbos, DGE:1445197; Gouvernement du Canada | Canadian Institutes of Health Research (CIHR): Mei Zhen, FS154274; American Heart Association (AHA): Sierra Palumbos, 19PRE34380582 The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Data Availability:
All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 4 and 5.
N/A

Ethics:
Human Subjects: No Animal Subjects: No

Information for reviewers (full submissions):
eLife aims to publish work of the highest scientific standards and importance in all areas of the life and biomedical sciences, from the most basic and theoretical work through to translational, applied and clinical research. Articles must be methodologically and scientifically rigorous, ethically conducted, and objectively presented according to the appropriate community standards.

You will be asked for a general assessment and a summary of any major concerns (ideally in fewer than 500 words), as well as a list of any minor comments (optional). You will also have the opportunity to comment on the statistical rigour of the work (optional).

In your general assessment, please articulate what is exciting and whether the work represents a significant contribution. Please note our guidelines about requests for additional work:

1. We will only request new work, such as experiments, analyses, or data collection, if the new data are essential to support the major conclusions. The authors must be able to do any new work in a reasonable time frame (additional work should be conducted and written up within two months); otherwise, we will usually reject the manuscript.

2. Any requests for new work must fall within the scope of the current submission and the technical expertise of the authors.

Our goal is to make peer review constructive and collaborative: after the reviews have been submitted independently, there is an online discussion between the reviewers in which each reviewer will see the identity of the other reviewers.
C. elegans neurons have functional dendritic spines

Andrea Cuentas-Condori, Ben Mulcahy, Siwei He, Sierra Palumbos, Mei Zhen, *David M. Miller, III

Affiliations

1. Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37212, USA.
2. Neuroscience Program, Vanderbilt University, Nashville, Tennessee, 37212, USA.
3. Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, M5G 1X5, Canada.

*Corresponding author: david.miller@vanderbilt.edu
SUMMARY

Dendritic spines are specialized postsynaptic structures that transduce presynaptic signals, are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been reported in *C. elegans* (Philbrook et al. 2018), suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we used super-resolution microscopy, electron microscopy, live-cell imaging and genetics to show that *C. elegans* motor neurons have functional dendritic spines that: (1) are structurally defined by a dynamic actin cytoskeleton; (2) appose presynaptic dense projections; (3) localize ER and ribosomes; (4) display calcium transients triggered by presynaptic activity and propagated by internal Ca^{2+} stores; (5) respond to activity-dependent signals that regulate spine density. These studies provide a solid foundation for a new experimental paradigm that exploits the power of *C. elegans* genetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.

KEY WORDS

Dendritic spines, motor neuron, acetylcholine, *C. elegans*

INTRODUCTION

The majority of excitatory synapses in the mammalian brain feature short, local protrusions from postsynaptic dendrites that respond to presynaptic neurotransmitter release (Rochefort and Konnerth 2012). These dendritic “spines” were originally described by Ramon y Cajal (Yuste 2015) and are now recognized as key functional components of neural circuits. For example, spine morphology and density are regulated by neural activity in plastic responses that are strongly correlated with learning and memory (Kozorovitskiy et al. 2005; May-Britt et al. 1998). Although spine-like protrusions have been reported for invertebrate neurons (Leiss et al. 2008;
few studies (Bushey, Tononi, and Cirelli 2011; Scott, Reuter, and Luo 2003) have rigorously determined if these structures share functional features with vertebrate spines.

The anatomy of the *C. elegans* nervous system was originally defined by reconstruction of electron micrographs (EM) of serial sections. This approach revealed that a small subset of neurons displays short, spine-like protrusions. These include five classes of motor neurons (RMD, RME, SMD, DD, VD) and an interneuron (RIP) (White et al. 1976, 1986). Light and electron microscopy detected similar dendritic protrusions extending from motor neurons in the nematode, *Ascaris* (Angstadt, Donmoyer, and Stretton 1989; Stretton et al. 1978). Finally, recent reports used light microscopy to show that a postsynaptic acetylcholine receptor is localized near the tips of spine-like protrusions on the DD class motor neurons that directly appose presynaptic termini (Oliver, Alexander, and Francis 2018; Philbrook et al. 2018). Here, we have adopted a systematic approach to demonstrate that spine-like structures in GABAergic motor neurons (DD and VD) exhibit the salient hallmarks of dendritic spines.

RESULTS AND DISCUSSION

Dendritic spines in *C. elegans* GABAergic neurons

In the adult, Dorsal D (DD) class GABAergic motor neurons extend axons to innervate dorsal muscles and receive cholinergic input at ventral dendrites (Figure 1A). We used Airyscan imaging, a type of super-resolution microscopy (Korobchevskaya et al. 2017), to detect spine-like projections on the ventral processes of adult DD neurons labeled with a cytosolic mCherry marker (Figure 1B). Because the actin cytoskeleton is a structural hallmark of vertebrate dendritic spines (Cingolani and Goda 2008), we also labeled DD neurons with the actin marker, LifeAct::GFP (Riedl et al. 2008). Super-resolution images detected apparent enrichment of LifeAct::GFP in DD spines versus the dendritic shaft. For a quantitative assessment, we
calculated the ratio of the spine to shaft fluorescence (Figure 1D) and plotted the cumulative distribution for each marker (Figure 1E). This representation shows a clear separation between measurements of cytosolic mCherry that is evenly distributed throughout dendrites (median spine/shaft ratio < 1) versus that of the LifeAct::GFP signal (median spine/shaft ratio > 1) (KS test, p<0.0001, Figure 1E). Thus, actin is enriched in DD spines. This interpretation is strengthened by our finding that independent measurements of the spine density (mean spine numbers/10 μm) with either cytoplasmic mCherry, LifeAct::GFP or the membrane bound marker, myristolated-mRuby (myr::mRuby) are not significantly different (Figures 1F and S1A). Similar results were obtained by EM reconstruction (see below) (Figure S1A).

A close inspection of LifeAct::GFP-labeled protrusions revealed a variety of spine shapes which we grouped into morphological classes resembling those previously reported for mammalian dendritic spines (Bourne and Harris 2008; Rochefort and Konnerth 2012): thin/mushroom, filopodial, stubby and branched (Figure 1G-I) (see Methods). We merged “thin” and “mushroom” shapes into a single category because both are defined by an enlarged head region vs a narrower neck. By these criteria, adult DD neurons have predominantly thin/mushroom spines, with lesser fractions of filopodial, stubby and branched shapes (Figure 1G and S1B-D). A comparison of the morphological classes identified with the LifeAct::GFP vs MYR::mRuby markers revealed some differences, notably the frequency of stubby spines, which is significantly elevated with the MYR::mRuby label (Figure S1D). These differences could reflect the relative ease of scoring different spine morphologies with markers for either the cell membrane (myr::mRuby) or actin cytoskeleton (LifeAct::GFP). Alternatively, over-expression of these markers could alter spine morphology but, in this case, does not appear to perturb overall spine density (Figure S1A).
As an independent method for assessing the presence of dendritic spines, we used EM to reconstruct the anterior-most 25 μm of the dendrite for DD1, the most anterior member of the DD class of motor neurons (White et al. 1986). For this experiment, young adult animals were prepared using High Pressure Freezing (HPF) to avoid potential artifacts arising from chemical fixation (Mulcahy et al. 2018; Weimer et al. 2006; White et al. 1986). Reconstruction of 50 nm serial ultrathin sections from the anterior DD1 dendrite detected twelve DD1 spines, with multiple morphological shapes (Figure 2C) that resemble classes revealed by fluorescent markers (Figure 1I; Figure S1B-C). EM reconstruction of mammalian dendritic spines in the hippocampus also revealed that thin and mushroom shapes predominate (K M Harris and Stevens 1989; Kristen M. Harris, Jensen, and Tsao 1992) and that filopodial and stubby spines are less abundant (Fiala et al. 1998; Zuo et al. 2005).

DD spines are shaped by a dynamic actin cytoskeleton

Although we have assigned DD motor neuron spines to four discrete classifications, both fluorescence imaging and EM reconstruction point to a broader array of spine types that includes potential intermediate forms (Figure 1G-H; 2C). A similarly heterogeneous array of spine shapes among mammalian neurons has been attributed to active remodeling of spine architecture (Sala and Segal 2014; Zuo et al. 2005). To test for this possibility in *C. elegans*, we used live imaging to produce time-lapse recordings of DD spines. Our live-imaging revealed that some DD spines can remodel *in vivo* (Video 1). For example, Figure 1J depicts the emergence of a LifeAct::GFP-labeled nascent lateral branch near the tip of a thin/mushroom spine. During imaging sessions of ≥ 30 minutes, we observed cases of transient filopodial-like extensions (11 out of 25 movies) from the dendritic shaft that retract in the course of minutes (Videos 2-3). In contrast, most DD spines were stable throughout a given imaging session. In the mature mammalian cortex, extended imaging has revealed transient filopodial extensions.
with a lifetime shorter than a day, and potential plasticity over longer intervals, where
approximately half of spines are stable for months (Trachtenberg et al. 2002; Zuo et al. 2005).

To our knowledge, our time lapse images are the first to visualize dynamic dendritic spines in a
motor neuron of a living organism (Kanjhan, Noakes, and Bellingham 2016).

Live-imaging of DD motor neurons also detected a dynamic actin cytoskeleton (Figure S2A-E
and Videos 2-3), consistent with previous reports for mammalian dendritic spines (Honkura et
al. 2008; Mikhaylova et al. 2018). To ask if actin assembly is required for DD spine
morphogenesis (Cingolani and Goda 2008), we applied genetic methods to knock down key
regulators of actin polymerization and assessed their effect on DD spines (Figure S2F). We
found that the Arp2/3 complex, and two of its activators, the F-BAR protein TOCA-1 (Ho et al.
2004) and the Wave Regulatory Complex (Chen et al. 2010), are required to maintain DD spine
density (Figure S2F). Restoring expression of TOCA-1 to DD neurons rescued the spine density
defect (Figure S2G), demonstrating that actin polymerization is required cell-autonomously to
promote spine formation. Disruption of the Arp2/3 complex or its activators has been previously
shown to reduce dendritic spine density in the mammalian brain and to impair function (Kim et

Dendritic spines of DD neurons directly appose presynaptic terminals

Because functional dendritic spines are sites of presynaptic input (Alvarez and Sabatini 2007;
Hering, Sheng, and Medical 2001; Petralia et al. 2016), we investigated the disposition of DD
spines vis-a-vis their main presynaptic partners, the cholinergic VA and VB class motor neurons
(Figure 2A). For super-resolution imaging, we used the synaptic vesicle-associated marker,
mCherry::RAB-3, to label VA and VB presynaptic termini and LifeAct::GFP to label DD neurites
and spines (Figure 2B). Clusters of mCherry::RAB-3-labeled puncta are located adjacent to DD
spines (Figure 2B) (Philbrook et al. 2018). Among the 128 spines identified by LifeAct::GFP,
most (~84%) reside near at least one presynaptic cluster (denoted “contacted” in Figure 2D). Approximately ~40% (51/128) of DD spines are associated with multiple presynaptic clusters of RAB-3 puncta which suggests that individual spines receive input from > 1 presynaptic terminal (arrowheads, Figure 2B).

Our EM reconstruction of a segment of DD1 dendrite revealed 12 spines, all in direct apposition with the presynaptic termini of cholinergic motor neurons (VA1, VA2 and VB2) (Figure 2C-D). Of the 33 cholinergic presynaptic inputs in this region, 84.8% (n = 28/33) appose DD1 spines, whereas only 15.2% (n = 5/33) are positioned along the dendritic shaft. This finding parallels the observation that only 10% of excitatory synapses in the mature mammalian cortex are positioned on dendritic processes (Cingolani and Goda 2008). Two thirds of DD1 spines (n = 8/12) receive input from more than one neuron class. That is, a single DD1 spine head is contacted by presynaptic termini of both VA and VB class cholinergic motor neurons (Figure 2C and Video 4). This finding could explain the observation above from Airyscan imaging that multiple mCherry::RAB-3 puncta are adjacent to ~40% of DD spines (Figure 2B, arrowheads).

We note that individual spines on GABAergic neurons in the mammalian hippocampus can also have inputs from multiple presynaptic termini (Acsady et al. 1998; Gulyás et al. 1992; Petralia et al. 2016). Interestingly, the DD1 dendrite also receives a few inhibitory inputs from the other class of GABAergic motor neurons (VD1), but most are restricted to the DD1 dendritic shaft (n = 5/6) (Figure 2C).

The acetylcholine receptor (AChR) subunit ACR-12 is postsynaptic to cholinergic inputs at GABAergic motor neurons (Pettrash et al. 2013), and has been previously shown to localize to DD1 dendritic protrusions (Figure 2E) (He et al. 2015; Philbrook et al. 2018). We used Airyscan imaging to quantify the subcellular distribution of the ACR-12::GFP signal on DD spines. We detected ACR-12::GFP clusters on ~95% of DD spines (n = 121/127) (Figure 2F-G), with 68.5%
localized at spine tips and the remainder either positioned along the lateral side of
the spine (~12%, n = 15/127) or at both the side and tip (~15 %, n = 19/127) (Figure 2G). 43.3%
of spines (n = 55/127) had more than one ACR-12::GFP cluster (Figure 2H), a finding that
mirrors a recent observation that spines of mammalian cortical neurons can display multiple
assemblages of the postsynaptic protein PSD-95 (Hruska et al. 2018).

To obviate the possibility that localization of ACR-12::GFP clusters to DD spines results from
over-expression, we used a new live-cell labeling scheme to detect an endogenous component
of the acetylcholine receptor complex, the co-factor protein LEV-10 (Gally et al. 2004). NATF
(Native and Tissue-Specific Fluorescence) relies on the reconstitution of superfolder GFP
(sfGFP) from the split-sfGFP fragments, GFP1-10 and GFP11 (He, Cuentas-Condori, and Miller
2019). We used genome editing to fuse seven tandem copies of GFP11 to the C-terminus of the
native LEV-10 coding sequence. When GFP1-10 was selectively expressed in DD neurons from
a transgenic array (i.e., Pflp-13::GFP1-10), we detected LEV-10 NATF-GFP signal at 100% (n =
159/159) of DD spines (Figure 2I-K), further substantiating the idea that DD spines are sites of
presynaptic input.

Our EM analysis confirmed that DD spines do not display electron dense postsynaptic densities
(PSDs), a feature that is also not detected in electron micrographs of most C. elegans
robustly stained PSDs are observed at vertebrate glutamatergic synapses, PSDs are either
absent or much less prominent in electron micrographs of vertebrate synapses at spines for
other neurotransmitters (glycine, GABA, acetylcholine) (Knott et al. 2002; Kubota et al. 2007;
Umbriaco et al. 1994). Postsynaptic assemblages at these synapses likely comprise distinct
sets of scaffolding proteins, some of which are readily stained by heavy atoms used for EM
ER and ribosomes localize to DD neuron dendritic spines

Key cytoplasmic organelles such as Smooth Endoplasmic Reticulum (SER), are present in both dendritic shafts and spines of mammalian neurons (K M Harris and Stevens 1989). In addition to its role of processing membrane proteins, spine SER regulates activity-dependent Ca\(^{++}\) release through the ryanodine receptor (Fill and Copello 2002). Other structures such as polysomes and rough ER have also been reported in spines, consistent with the possibility of local translation at synapses (Bourne and Harris 2008; Hafner et al. 2019; Nimchinsky, Sabatini, and Svoboda 2002; Steward, Reeves, and Reeves 1988).

Our EM reconstruction of DD1 revealed cisternae SER-like structures in both the dendritic shaft and spines of DD1 (Figure 3A-B) and apparent ribosomes in some DD1 spines (Figure 3B’’). Consistent with this observation are our light microscopy images that detect the ribosomal protein RPS-18::GFP (Noma et al. 2017) in about half of ($44.5 \pm 12.0\%$) DD spines (Figure 3C).

Mitochondria and microtubules are reported to be rare in the dendritic spines of mature mammalian neurons (Bourne and Harris 2008; Nimchinsky, Sabatini, and Svoboda 2002). Our EM reconstruction did not find mitochondria or microtubules in all twelve DD spines (Figure 3D), while both organelles were detected in the DD1 dendritic shaft (Video 5). These observations however should be interpreted cautiously given the small number of spines reconstructed.

Activation of presynaptic cholinergic motor neurons drives Ca\(^{++}\) transients in DD spines

Ca\(^{++}\) is a key signaling molecule to mediate activity-dependent synaptic plasticity (Lee et al. 2016; Rochefort and Konnerth 2012). We reasoned that functional DD spines should exhibit dynamic Ca\(^{++}\) transients. To test this hypothesis, we expressed the Ca\(^{++}\) sensor GCaMP6s in DD neurons. Live-imaging (at 2 second intervals) revealed spontaneous Ca\(^{++}\) transients in both DD spines and shafts that lasted for several seconds (Figure 4A-C and Video 6). Muscle cells...
that share cholinergic input with DD spines also display prolonged elevation of Ca++ over a period of seconds (Liu, Chen, and Wang 2013), suggesting that cholinergic neurons regulate the long lasting bursts of Ca++ in spines and muscle cells.

Interestingly, Ca++ transients were observed simultaneously in adjacent spines about 50\% of the time (Figure 4D). To estimate the likelihood of simultaneous Ca++ peaks occurring by chance, we compared the distribution of the observed time differences between neighboring spine Ca++ peaks (\(\Delta T\)) to that of a uniform distribution (at 2 second intervals) over the period of observation (20 seconds). These distributions are statistically different (KS test, \(p<0.0001\)), suggesting that Ca++ dynamics may reflect mechanisms for postsynaptic coordination of adjacent DD spine activity (Figure 4D). Alternatively, coordinated Ca++ transients in adjacent spines could arise from shared presynaptic neuron inputs. For example, the majority of DD1 spines (9/12) are postsynaptic to the same cholinergic motor neuron VA2 (Figure 2C). A similar explanation of convergent input was proposed for the coordinated firing of adjacent dendritic spines in rat hippocampal neurons (Takahashi et al. 2012).

We did not observe Ca++ signals in DD spines when cholinergic receptors were desensitized by administration of an agonist levamisole (data not shown). This finding is consistent with the hypothesis that Ca++ transients in DD spines depend on presynaptic cholinergic signaling. To test this idea, we engineered a transgenic animal for optogenetic activation of VA neurons with ceChrimson (\textit{Punc-4:ceChrimson::SL2::3xNLS::GFP}) (Schild and Glauser 2015) and detection of Ca++ changes in DD spines with GCaMP6 (\textit{Pflp-13::GCaMP6s::SL2::mCherry}). VA motor neurons are presynaptic to DDs and therefore are predicted to evoke DD neuronal activity (Philbrook et al. 2018; White et al. 1986). ceChrimson was activated by a brief flash of 561 nm light (80ms) at 2.5 second intervals and the GCaMP6s signal in DD neurons was recorded at 2Hz. This experiment detected a correlation of GCaMP6s fluorescence with ceChrimson
activation (Figure 4E-G and Videos 7-8). Although GCaMP6s fluorescence also varied in DD spines in the absence of 561 nm illumination, fluctuations were strongly correlated with ceChrimson activation as shown by a plot of the standard deviation of GCaMP6s fluorescence for all traces across the 15-second sampling period (Figure 4H). These results are consistent with the interpretation that DD spines are responding to cholinergic input from presynaptic VA motor neurons and parallel an earlier observation that DD dendritic protrusions are required for cholinergic activation of Ca\(^{++}\) transients in DD cell soma (Philbrook et al. 2018).

Activation of ceChrimson triggered Ca\(^{++}\) changes at neighboring spines and in the DD shaft (Figure 4F). As noted above, this effect could arise from shared input to adjacent spines from a single presynaptic motor neuron (Figure 2C). Ca\(^{++}\) waves might also spread along the DD dendrite from a locally activated spine. To test for this possibility, we restricted ceChrimson activation to regions adjacent to single DD spines and recorded Ca\(^{++}\) changes (1) at the excited spine; (2) at an adjacent spine and (3) at a distant spine (See Methods) (Figure 4I). Live imaging two seconds after ceChrimson activation detected elevated GCaMP signals in spines in all three regions that then waned with time (Figure 4J and Video 9). This observation suggests that local cholinergic release can trigger Ca\(^{++}\) changes in neighboring and distant spines. In developing hippocampal neurons, an initial Ca\(^{++}\) transient can be propagated to neighboring spines via Ca\(^{++}\) release from intracellular stores (Lee et al., 2016). Because activation of intracellular Ca\(^{++}\) stores depends on ryanodine-sensitive channels, we repeated the local spine activation experiment (Figure 4I) in the presence of 1mM ryanodine. Blocking ryanodine receptor-dependent Ca\(^{++}\) release substantially attenuated Ca\(^{++}\) transients in all spines (Figure 4K) thus suggesting that intracellular Ca\(^{++}\) is required to propagate the initial activation. In hippocampal neurons, local glutamate uncaging triggers ryanodine-insensitive Ca\(^{++}\) transients in the excited spine but this effect is rapid (~250 ms) (Lee et al. 2016) and thus a similar rapid initial Ca\(^{++}\) transient might have been missed by our experimental set up that detects GCaMP
signals ~2 seconds after CeChrimson activation (Figure 4K). Our finding of prominent SER-like structures in the DD shaft and spines is consistent with the idea that Ca\(^{2+}\) release from intracellular stores could drive coordinated activation of adjacent spines (Figure 3A-B). Further, a mutation that disrupts the UNC-68/Ryanodine receptor function results in substantially reduced intrinsic Ca\(^{2+}\) dynamics in DD spines (Figure S3A). Together, our results suggest that Ca\(^{2+}\) signals can propagate to nearby spines after local activation and that spreading depends on intracellular Ca\(^{2+}\) stores.

Cholinergic signaling enhances DD spine density during development.

In mammalian neurons, spine shape and density are modulated throughout development (Fiala et al. 1998; Kristen M. Harris, Jensen, and Tsao 1992; Kanjhan et al. 2016). LifeAct::GFP imaging in late larval to adult stages (L3, early L4, mid-L4 and young adult), revealed that spine density increases as DD neurons elongate during development (Figures 5B, 5E and S4A).

Dendritic spines can be modulated by changes in synaptic strength (Bourne and Harris 2008; Nimchinsky, Sabatini, and Svoboda 2002; Rochefort and Konnerth 2012). Long-term potentiation is correlated with increased numbers of spines in the mammalian brain (Engert and Bonhoeffer 1999; Trachtenberg et al. 2002, 2005). Similarly, hyperactivity is associated with increased dendritic spine density in hypoglossal motor neurons (Kanjhan, Noakes, and Bellingham 2016). Conversely, long-term depression induces spine shrinkage (Zhou, Homma, and Poo 2004) and may lead to their elimination (Hasegawa et al. 2015).

We tested whether DD spines respond to changes in cholinergic input by altering acetylcholine levels. To reduce cholinergic signaling, we used *unc-17/vAChT (e113)* mutants, in which expression of the vesicular acetylcholine transporter vAChT is selectively eliminated in ventral cord cholinergic motor neurons (J. Rand, personal communication). Conversely, to elevate
cholinergic signaling, we used \textit{ace-1(p100);ace-2(g720)} mutants that disrupt
acetylcholinesterase activity (Figure 5A). Reduced acetylcholine release in the \textit{unc-17/vAChT}
mutant results in reduced DD spine density at the L4 larval stage (Figure 5C, 5E and S4B). In
contrast, increased acetylcholine levels (i.e., in \textit{ace-1;ace-2} mutants) results in precocious
elevation of spine density during development (Figure 5D, 5E and S4C). Importantly, either
chronic reduction (i.e., in the \textit{unc-17/vAChT} mutant) or elevation (i.e., in \textit{ace-1;ace-2} double
mutants) of acetylcholine levels (Figure S4B and S4C) impaired the developmentally regulated
enhancement of spine density that is normally observed in wild-type animals. These findings are
consistent with the idea that cholinergic signaling positively regulates the formation of DD
spines. The developmental elevation of spine density is also blocked in \textit{unc-31/CAPS} mutants
(Speese et al. 2007), in which neuropeptide and catecholamine neurotransmitter release is also
prevented (Figure S4D and S4E).

For an additional test of activity-dependent regulation of DD spine density, we modulated
presynaptic cholinergic function for specific periods during larval development. To reduce
cholinergic activity, we expressed the histamine-gated chloride channel (Pokala et al. 2014) in
A-class (DA, VA) cholinergic motor neurons, presynaptic partners of DD neurons (Figure 2C)
(White et al. 1976). Animals grown in the presence of histamine showed reduced spine density
at the L4 stage compared to animals grown on plates without histamine (Figure 5F-I). To
elevate cholinergic activity, we expressed \textit{ceChrimson} (Schild and Glauser 2015) in A-class
motor neurons and measured spine density at the L3 stage when wild-type animals show fewer
DD spines than in adults (Figure 5B and 5E). Animals were exposed to 561 nm light to activate
\textit{ceChrimson} for a brief period (1 second every 4 seconds) during the L2-L3 stage larval
development (See Methods). This treatment led to increased spine density (scored in L3 larvae)
in comparison to animals without \textit{ceChrimson} stimulation (Figure 5J-M). These results
demonstrate that DD spine density depends on presynaptic cholinergic signaling. Thus DD
spines share the property of mammalian dendritic spines of positive regulation by neuronal activity (Kanjhan et al. 2016; Trachtenberg et al. 2005).

VD-class GABAergic neurons also display dendritic spines.

In the adult *C. elegans* motor circuit, dendrites of the DD-class GABAergic motor neurons receive cholinergic input in the ventral nerve cord, whereas the VD class receives input in the dorsal nerve cord (Figure S3A). Because the original EM reconstruction of the *C. elegans* nervous system detected spine-like structures on VD neurons (White et al. 1976), we sought to verify this finding by using the LifeAct::GFP marker for Airyscan imaging. We used miniSOG (Qi et al. 2012) for selective ablation of DDs (See Methods) since the LifeAct::GFP marker (*Punc-25::LifeAct::GFP*), in this case, was expressed in both DD and VD neurons. This experiment confirmed the presence of dendritic spines in VD neurons throughout the dorsal nerve cord (Figure S5A-D).

Our EM reconstruction of 27 μm of the anterior VD2 dendrite detected 9 dendritic spines (Figure S3E). Similar to DD1, most VD spines are juxtaposed to presynaptic termini of cholinergic motor neurons (DA2, DB1, AS2). Additional presynaptic inputs from other cholinergic and GABAergic motor neurons (DD1) are distributed along the dendritic shaft (Figure S3F). Several mitochondria are also observed in VD2 dendritic shaft (Figure S3E). Thus, both the DD and VD classes of ventral cord GABAergic motor neurons display dendritic spines (White et al. 1976, 1986).

Why study dendritic spines in *C. elegans*?

The prevalence of postsynaptic protrusions in vertebrate and invertebrate nervous systems suggests that spines are ancient structures and thus could be effectively investigated in a variety of model organisms (Leiss et al. 2008; Petralia et al. 2016). Our analyses revealed...
salient, conserved features of *C. elegans* dendritic spines: (1) A key role for the actin cytoskeleton in spine morphogenesis; (2) Postsynaptic receptor complexes at the tips of spines in close proximity to presynaptic active zones; (3) Postsynaptic calcium transients evoked by presynaptic activity and propagated from intracellular Ca\(^{2+}\) stores; (4) The presence of endoplasmic reticulum and ribosomes; (5) Regulation of spine density by presynaptic activity.

C. elegans offers several advantages for studies of spine morphogenesis and function. Because *C. elegans* is transparent, live imaging does not require surgery or other invasive methods that are typically necessary for *in vivo* imaging of spines in an intact mammalian nervous system. Well-developed *C. elegans* genetic tools for targeted genomic manipulation (Nance and Frøkjær-Jensen 2019) and unbiased forward genetic screens can be used to reveal new determinants of spine assembly. A recent study, for example, reported that neurexin, a conserved membrane protein and established regulator of synaptic assembly, is necessary for spine morphogenesis in DDs. Interestingly, in this case, neuroligin, the canonical neurexin ligand, is not required, suggesting a potentially new neurexin-dependent mechanism of synaptogenesis (Oliver, Alexander, and Francis 2018; Philbrook et al. 2018).

Our study confirmed that both DD and VD motor neurons display dendritic spines. Thus, other neurons reported to have “short branches” in the original EM reconstruction of the adult *C. elegans* (White et al. 1986), the cholinergic (RMD, SMD) and GABAergic (RME) motor neurons and the interneuron (RIP), are likely to display *bona fide* dendritic spines. An ongoing effort to produce a gene expression fingerprint of each type of *C. elegans* neuron (Hammarlund et al. 2018; Taylor et al. 2019) may be useful for identifying genetic programs that uniquely correlate with spine morphogenesis since only a small number (White et al. 1976) of neurons have been reported to have spine-like structures. Finally, a developmentally regulated remodeling program (Kurup and Jin 2016; Petersen et al. 2011; John G. White, Albertson, and Anness 1978)
transforms presynaptic boutons into postsynaptic spines in larval DD neurons and thus could be especially useful for live imaging studies of synaptic plasticity and spine morphogenesis.

ACKNOWLEDGEMENTS

We thank M. Francis and Alison Philbrook for sharing unpublished observations. We thank Douglas Holmyard (Nanoscale Biomedical Imaging Facility) for preparing EM samples and serial EM sections; Dylan Burnette, Aidan Fenix and Nilay Taneja for insightful imaging discussions; and Erin Miller for help with aligning serial electron micrographs. Some C. elegans strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440). Airyscan and live-imaging data was acquired at the Vanderbilt Cell Imaging Shared Resource (supported by NIH grants CA68485, DK20593, DK58404, DK59637 and EY08126). This work was supported by National Institutes of Health grants to DMM (R01NS081259 and R01NS106951), American Heart Association predoctoral fellowships to ACC (18PRE33960581) and SP (19PRE34380582), National Science Foundation GRFP to SP (DGE:1445197) and a Canadian Institute of Health Research grant to MZ (FS154274).

DECLARATION OF INTERESTS
The authors declare no financial interests.

METHODS

Plasmids used in this study:

<table>
<thead>
<tr>
<th>Plasmid Name</th>
<th>Description</th>
<th>Cloned by</th>
</tr>
</thead>
<tbody>
<tr>
<td>pACC4</td>
<td>punc-25::LifeAct::GFP</td>
<td>Gateway cloning</td>
</tr>
<tr>
<td>pACC6</td>
<td>pflp-13::LifeAct::GFP</td>
<td>InFusion cloning</td>
</tr>
<tr>
<td>pACC12</td>
<td>pflp-13::LifeAct::mCherry</td>
<td>InFusion cloning</td>
</tr>
<tr>
<td>pACC22</td>
<td>pflp-13::toca-1a::mCherry</td>
<td>InFusion cloning</td>
</tr>
<tr>
<td>pACC83</td>
<td>pflp-13::GCaMP6s::SL2::mCherry</td>
<td>InFusion cloning</td>
</tr>
<tr>
<td>pACC86</td>
<td>punc-4::ceChrimson::SL2::mCherry</td>
<td>InFusion cloning</td>
</tr>
<tr>
<td>pACC92</td>
<td>punc-4::ceChrimson::SL2::3xNLS::GFP</td>
<td>InFusion cloning</td>
</tr>
<tr>
<td>pMLH09</td>
<td>punc-25::gateway::GFP</td>
<td>Gift</td>
</tr>
<tr>
<td>pSH4</td>
<td>pmyo-2::RFP</td>
<td>Gift</td>
</tr>
<tr>
<td>pSH21</td>
<td>pstr-1::GFP</td>
<td>InFusion cloning</td>
</tr>
<tr>
<td>pSH40</td>
<td>punc-4::HisCl::SL2::mCherry</td>
<td>Gift</td>
</tr>
<tr>
<td>pSH83</td>
<td>pflp-13::miniSOG::SL2::BFP</td>
<td>InFusion cloning</td>
</tr>
<tr>
<td>pACC128</td>
<td>pflp-13::myr::mRuby3</td>
<td>InFusion cloning</td>
</tr>
</tbody>
</table>

Strains used in this study:

<table>
<thead>
<tr>
<th>Strain Name</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMN46</td>
<td>bgls6 [pflp-13::mCherry; Ptx-3::RFP] II</td>
<td>(Opperman and Grill 2014)</td>
</tr>
<tr>
<td>NC3315</td>
<td>wdEx1016 [pflp-13::LifeAct::GFP; pmyo-2::RFP]</td>
<td>This study</td>
</tr>
<tr>
<td>NC3376</td>
<td>ufls63 (pacr-2::RAB3::mCherry) ; wdEx1016[pflp-13::LifeAct::GFP; pmyo-2::RFP]</td>
<td>This study</td>
</tr>
<tr>
<td>NC3458</td>
<td>eri-1(mg366); wdEx1016 [pflp-13::LifeAct::GFP; pmyo-2::RFP]</td>
<td>This study</td>
</tr>
<tr>
<td>NC3355</td>
<td>toca-1(tm2056) X; wdEx1016 [pflp13::LifeAct::GFP; pmyo-2::RFP]</td>
<td>This study</td>
</tr>
<tr>
<td>NC3357</td>
<td>wdEx1029 [pflp13::LifeAct::GFP; punc4::HisCl::SL2::mCherry; pmyo-2::RFP]</td>
<td>This study</td>
</tr>
<tr>
<td>Strain</td>
<td>Genotype Details</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>NC3455</td>
<td>ace-2(g72) I ; ace-1(p100) X; wdEx1016 [pflp-13::LifeAct::GFP; pmyo-2::RFP]</td>
<td>This study</td>
</tr>
<tr>
<td>NC3462</td>
<td>unc-17(e113) IV; wdEx1016 [pflp-13::LifeAct::GFP; pmyo-2::RFP]</td>
<td>This study</td>
</tr>
<tr>
<td>NC3469</td>
<td>wdEx1069 [pflp13::LifeAct::mCherry; pstr-1::GFP]</td>
<td>This study</td>
</tr>
<tr>
<td>NC3470</td>
<td>wdEx1074 [pflp-13::miniSOG::SL2::BFP; punc-25::LifeActGFP; pmyo-2::RFP]</td>
<td>This study</td>
</tr>
<tr>
<td>NC3482</td>
<td>acr-12(ok367) ufls126 [pflp-13::ACR12::GFP] X, wdEx1069 [pflp-13::LifeAct::mCherry; pstr-1::GFP]</td>
<td>This study</td>
</tr>
<tr>
<td>NC3484</td>
<td>wdEx1078 [pflp-13::GCaMP6s::SL2::mCherry; pmyo-2::RFP]</td>
<td>This study</td>
</tr>
<tr>
<td>NC3486</td>
<td>unc-31(e169) IV; wdEx1016 [pflp-13::LifeAct::GFP; pmyo-2::RFP]</td>
<td>This study</td>
</tr>
<tr>
<td>NC3489</td>
<td>wdEx1083 [punc-4::ceChrimson::SL2::mCherry; pflp-13::LifeAct::GFP; pmyo-2::RFP]</td>
<td>This study</td>
</tr>
<tr>
<td>NC3569</td>
<td>lin-15(n765); wdls117 [punc-4::ceChrimson::SL2::3xNLS::GFP; lin-15+]; wdEx1112 [pflp13::GCaMP6s::SL2::mCherry]</td>
<td>This study</td>
</tr>
<tr>
<td>NC3608</td>
<td>wdEx123[pflp-13::myr::mRuby; pstr-1::GFP]</td>
<td>This study</td>
</tr>
<tr>
<td>NC3609</td>
<td>toca-1(tm2056); wdEx124[pflp-13::toca-1::mCherry; pflp-13::LifeAct::GFP; pmyo-2::RFP]</td>
<td>This study</td>
</tr>
<tr>
<td>NC3610</td>
<td>unc-68(r1162) V; wdEx1112 [pflp13::GCaMP6s::SL2::mCherry]</td>
<td>This study</td>
</tr>
</tbody>
</table>

Worm Breeding

Worms were maintained at 20°-25°C using standard techniques (Brenner 1974). Strains were maintained on NGM plates seeded with *E. coli* (OP-50) unless otherwise stated. The wild type (WT) is N2 and only hermaphrodite worms were used for this study. Staging as L3, early L4
(eL4), L4 and young adult worms was defined following vulva development as previously reported (Chia, Patel, and Shen 2012).

Molecular Biology

Gateway cloning was used to build pACC06 (punc-25::LifeAct::GFP). Briefly, plasmid pDONR221 (Plastino Lab) (Havrylenko et al. 2015) was used in the LR reaction with pMLH09 (punc-25::ccdB::GFP) to create pACC06. Additional plasmids were created using InFusion cloning (Takara). The InFusion cloning module (SnapGene) was used to design primers to create the desired plasmid. Briefly, vector and insert fragments were amplified using CloneAmp HiFi polymerase. PCR products were gel-purified and incubated with In-Fusion enzyme for ligations. Constructs were transformed into Stellar Competent cells and confirmed by sequencing (See full list of plasmids). Plasmids are available upon request. Addgene provided sequences for GCamP6s (#68119), and *C. elegans*-optimized Chrimson (ceChrimson, #66101) (Schild and Glauser 2015). miniSOG sequence was a gift from the Jin lab (Qi et al. 2012). pSH40 was a gift from the Bargmann Lab (Pokala et al. 2014). *C. elegans*-optimized mRuby3 was a gift from Peri Kurshan (Shen Lab). TOCA-1a cDNA was a gift from Barth Grant (Bai and Grant 2015).

Feeding RNAi

Clones from the RNAi feeding library (Source BioScience) were used in this study. RNAi plates were produced as described (Petersen et al. 2011). Briefly, RNAi bacteria were grown in the presence of ampicillin (50 µg/mL) and induced with IPTG (1 mM). 250µL of the RNAi bacterial culture was seeded on NGM plates. RNAi plates were kept at 4°C for up to one week until used. RNAi experiments were set-up as follows: 3 to 5 L4 worms (NC3458) were placed on RNAi plates and maintained at 20°C. Four days later, F1 progeny was imaged as young adults.

Electron Microscopy

Young adult animals were fixed using high pressure freezing followed by freeze substitution, as previously described (Mulcahy et al. 2018; Rostaing et al. 2004), with minor modification: they
were held at -90°C in acetone with 0.1% tannic acid and 0.5% glutaraldehyde for 4 days, exchanged with 2% osmium tetroxide in acetone, raised to -20°C over 14h, held at -20°C for 14h, then raised to 4°C over 4h before washing. Additional en bloc staining was performed with uranyl acetate for 2h at room temperature, followed by lead acetate at 60°C for 2h. Samples were embedded in Epon, cured at 60°C for 24h, then cut into 50nm-thick serial sections. Sections were not poststained. Images were taken on a FEI Tecnai 20 transmission electron microscope with a Gatan Orius digital camera, at 1nm/pixel.

3D reconstruction
Images were aligned into a 3D volume and segmented using TrakEM2 (Cardona et al. 2012), a Fiji plugin (Schindelin et al. 2012). Neuron identity was assigned based on characteristic morphology, process placement, trajectory and connectivity (Mulcahy et al. 2018; White et al. 1986). The ventral and dorsal cord volumes contained the anterior-most 25 um of DD1, and 27 um of VD2, respectively. Volumetric reconstructions were exported to 3Ds Max for processing (3Ds Max, Autodesk)

Airyscan Microscopy
Worms were mounted on 10% agarose pads and immobilized with 15mM levamisole/0.05% tricaine dissolved in M9. A Zeiss LSM880 microscope equipped with an Airyscan detector and a 63X/1.40 Plan-Apochromat oil objective lens was used to acquire super resolution images of the DD neuron. Images were acquired as a Z-stack (0.19μm/step), spanning the total volume of the DD ventral process and submitted for Airyscan image processing using ZEN software. Developmental stage was determined by scoring gonad and vulva development (Schindler and Sherwood 2013).

Classification of spines
Spine shapes were determined from Z-projections of Airyscan images and by 3D-EM reconstruction. Mean and SD were determined using GraphPad. Spines were classified as thin/mushroom, filopodial, stubby or branched. Thin/mushroom spines displayed a constricted
base (neck) and an expanded tip (head). Filopodial spines do not have a constricted base (no neck) but are protrusions of constant width. Stubby spines were recognized as protrusions with a wide base and tip. Branched spines were identified as protrusions with more than one visible tip.

Ribosomal protein labeling in DD spines
To label ribosomes in DD spines, we used DD-specific RIBOS (Noma et al. 2017). To label DD spines we injected Pflp-13::LifeAct::mCherry plasmid into CZ20132 and used Airyscan imaging to examine transgenic animals (See Airyscan microscopy section).

Actin dynamics
A Nikon microscope equipped with a Yokogawa CSU-X1 spinning disk head, Andor DU-897 EMCCD camera, high-speed piezo stage motor, 100X/1.49 Apo TIRF oil objective lens and a 1.5X magnification lens was used for live imaging. For measurements of LifeAct::GFP and cytosolic mCherry dynamics, L4 and young adults (NC3315 and XMN46) were mounted on 10% agarose pads and immobilized with 15mM levamisole/0.05% tricaine dissolved in M9. Z-stacks (0.5μm/step) were collected every 3 minutes. Movies were submitted to 3D-deconvolution on NIS-Elements using the Automatic algorithm and aligned with the NIS Elements alignment tool. For each movie, ROIs were defined along the dendritic shaft for each spine. Mean ROI Intensity was calculated for each time point and exported to Microsoft Excel. Background was determined from a neighboring region inside the worm and subtracted from the ROI in each timepoint. Mean intensity changes where normalized to the mean Intensity from the first timepoint of each movie. Intensity changes for LifeAct::GFP and mCherry were graphed using Prism6 software.

GCaMP6s dynamics in DD spines
GCaMP6s imaging was performed on a Nikon microscope equipped with a Yokogawa CSU-X1 spinning disk head, Andor DU-897 EMCCD camera, high-speed piezo, 100X/1.49 Apo TIRF oil objective lens and a 1.5X magnification lens. NC3484 worms were immobilized using a
combination of 3µL of 100mM muscimol (TOCRIS biosciences #0289) and 7µL 0.05um polybeads (2.5% solids w/v, Polysciences, Inc. #15913-10). Triggered acquisition was used to excite the GCaMP and mCherry signals with 488nm and 561nm lasers. Single plane movies were collected every second for at least 24 seconds. Movies were submitted for 2D-deconvolution on NIS-Elements using the Automatic algorithm. Movies collected with NIS-elements were aligned through time using the ND alignment tool. ROIs with the same area for each channel were defined in spines and on a neighboring region to determine background intensity for every time point. Mean ROI intensity was exported to Microsoft Excel for subtraction of mean fluorescence background intensity. Fluorescence at each timepoint was normalized to intensity at t=0 for GCaMP6s and mCherry signals. Local peaks of GCaMP6s fluorescence were identified between neighboring neurons and the difference between the timepoints (deltaT) was calculated. Traces were graphed on Prism6.

To detect evoked calcium responses in DD neurons, NC3569 was grown for 1 generation on an OP50-seeded plate with freshly added ATR or carrier (EtOH). L4 worms were glued (Super Glue, The Gorilla Glue Company) to a microscope slide in 2µL 0.05um polybeads (2.5% solids w/v, Polysciences, Inc. #15913-10) plus 3µL of M9 buffer and imaged under a coverslip. GCaMP6s dynamics were recorded after all-spines activation on a Nikon microscope equipped with a Yokogawa CSU-X1 spinning disk head, Andor DU-897 EMCCD camera, high-speed piezo and 100X/1.49 Apo TIRF oil objective lens. Single plane images encompassing DD1 postsynaptic spines and adjacent VA and DA motor neurons were collected at 2 frames/second for 15 seconds. The sample was illuminated with a 561nm laser at 2.5 sec intervals (e.g., every 5 frames) for red light activation of ceChrimson expressed in cholinergic DA and VA motor neurons (Punc-4::ceChrimson::SL2::3xNLS::GFP) while maintaining constant illumination with a 488nm laser to detect GCamP6s signals.

We used a sequential excitation/imaging protocol to measure Ca++ transients in spines after local activation of cholinergic release. GCaMP6s signals were recorded after a single-spine
activation on a Nikon A1R laser scanning confocal microscope using a 60X/1.4 N.A oil objective lens with Nyquist acquisition. A stimulation ROI was defined adjacent to a single DD1 or DD2 spine and illuminated with the 561nm laser for less than 200 ms. GCaMP6s changes were recorded with 488nm laser every 2 seconds for 30 seconds and 561nm excitation was triggered after the 4th imaging time-point. Ryanodine-treated worms were soaked in 1mM ryanodine (TOCRIS biosciences #1329) for 15 minutes before the imaging session and mounted on a slide using glue as above.

For quantifying GCaMP6s fluorescence, videos were aligned and 2D-deconvolved using NIS Elements software. Three regions of interest were defined to evaluate average fluorescence intensity from (1) a spine at the site of excitation; (2) an adjacent spine and (3) a distant spine, i.e., at least 9 µm away from the excitation point. Signal was collected from separate ROIs drawn on each spine and on a nearby region to capture background fluorescence. Mean fluorescence intensity of each ROI was exported into Excel for analysis. Background fluorescence was subtracted from each frame and measurements were normalized to the initial time-point. Mean fluorescence traces were plotted using Prism6. Statistical analysis compared average GCaMP6s intensity of the first 4 frames vs GCaMP6s after stimulation (5th frame) using the Kruskal Wallis test for non-parametric samples and multiple comparisons.

Temporal neuronal silencing with histamine chloride

Gravid adults were allowed to lay eggs for 2 hours on an OP50-seeded plate at 20 C to produce a synchronized population of L1 larvae. The middle time-point of the egg-laying session was considered T₀. At T₁₉ (time in hours), L1 larvae were transferred to control or histamine plates and maintained at 20°C until imaging on an LSM880 Airyscan microscope at the young adult stage. For control plates, 200µL of water was added to OP-50 seeded NGM plates. For histamine plates, 200µL of 0.5M Histamine, diluted in water, was added to OP-50 seeded NGM plates.
Temporal neuronal activation

Gravid adults were allowed to lay eggs for 2 hours on an OP-50-seeded plate with freshly added ATR. The resultant synchronized population of L1 larvae was maintained at room temperature (23-25°C). At T_{27} (L2 larvae), we used WormLab (MBF Bioscience) for exposure to repetitive cycles of 1 second ON + 4 seconds OFF for 6 hours of a 617nm precision LED (Mightex PLS-0617-030-10-S). Images were collected on an LSM880 Airyscan microscope with 60X/1.4 Plan-Apochromat oil objective lens. Control worms were not exposed to light but grown on ATR plates. 100mM ATR (Sigma, #A7410) was prepared in ethanol and stored at -20°C. 300uM of ATR was added to OP-50 bacteria and seeded on NGM plates. Plates were dried in darkness overnight and used the next day for experiments.

Image Analysis

FIJI (Schindelin et al. 2012) and NIS-Elements software were used for data quantification. Z-stacks were flattened in a 2D projection and line scans were manually drawn along protrusions and perpendicular to the proximal shaft (Figure 1d) to determine the Protrusion/Shaft ratio (Figure 1e). Spine density was calculated using the counting tool in NIS Elements and then normalized to number of spines per 10 µm of dendrite length.

Statistical Analysis

For comparison between 2 groups, Student’s T-test was used and p<0.05 was considered significant. ANOVA was used to compare between 3 or more groups followed by Dunnett’s multiple-comparison test. Standard Deviations between two samples were compared using an F-test and considered p<0.05 as significant.

Ablation of DD neurons

Twenty gravid adults (NC3480) were allowed to lay eggs for 2 hours with the middle time point considered T₀. At T_{16}, (hours) DD neurons were ablated by miniSOG(Qi et al. 2012) activation by exposing worms for 45 min to a 470nm LED light (#M470L2, Thor Labs). Animals were then maintained at 20°C until imaging at ~T_{60} as young adults.
REFERENCES

Chia, Poh Hui, Maulik R Patel, and Kang Shen. 2012. “NAB-1 Instructs Synapse Assembly by

http://dx.doi.org/10.1038/nn.2991

http://www.nature.com/doifinder/10.1038/nrn2373.

Sala, Carlo, and Menahem Segal. 2014. “Dendritic Spines: The Locus of Structural and Functional Plasticity.”

Figure 1. DD GABAergic neurons display dendritic spines.

A. Six DD motor neurons are located in the *C. elegans* ventral nerve cord. In the adult, DD presynaptic boutons (oblong ovals) innervate dorsal muscles (grey cells) and DD postsynaptic termini (spines) receive cholinergic input from VA and VB motor neurons on the ventral side (magenta).

B-F. Airyscan imaging resolves ventrally projecting spines from DD neurons labeled with (B) cytosolic mCherry or (C) LifeAct::GFP. D. Intensity of spine over shaft ratio reveals that (E) LifeAct::GFP preferentially accumulates at the spine whereas cytosolic mCherry is evenly distributed between the spine and shaft (KS test, p<0.0001, n > 286 spines). F. Spine density of young adults revealed by mCherry (3.68 ± 0.8 spines/10µm) or LifeAct::GFP (3.43 ± 1.2 spines/10µm) is not significantly different (t test, p=0.0855, n > 16 worms). Measurements are mean ± SD. Scale bars = 2 µm.

G-I. LifeAct::GFP reveals 1. Thin/Mushroom (55.5 ± 14.5%), 2. Filopodial (10.3 ± 8.70%), 3. Stubby (18.8 ± 10.4%), 4. Branched spines (15.4 ± 6.0%) in adult DD motor neurons. Measurements are mean ± SD, n = 16 worms, 357 spines. For scatterplot, see Figure S1. (Scale bar = 1 µm).

H. Schematic of spine shapes.

I. Images of each type of spine identified by (top) Airyscan imaging (Scale bar = 500nm) of LifeAct::GFP or (bottom) 3D-reconstruction of DD1 from serial electron micrographs of a high-pressure frozen young adult. See also Figure S1B.

J. Dendritic spines are dynamic. Snapshots of *in vivo* spine remodeling from a thin/mushroom (arrowhead) to branched morphology (arrow). Images (LifeAct::GFP) are shown with a rainbow LUT. Higher intensity is represented by warm colors and dimmer intensity by cold colors. L4 stage larva. See also Figure S1C-H. Scale bar = 500 nm.
Figure 2. DD spines appose presynaptic cholinergic vesicles

A. Postsynaptic ionotrophic acetylcholine receptors (iAChRs) are localized in GABAergic motor neurons in apposition to input from cholinergic motor neurons.

B. Cholinergic RAB-3 presynaptic vesicles labeled with mCherry localize in close proximity to DD postsynaptic spines labeled with flp-13::LifeAct::GFP. Young adult stage worms. Scale bar = 1µm. Asterisk denotes the DD cell body. Arrowheads mark multiple RAB-3::mCherry clusters apposing dendritic spines.

C. Volumetric EM reconstruction of a portion of the DD1 dendrite (25 µm) in the ventral nerve cord (gray) detects contacts with 43 presynaptic termini from axons of the cholinergic (VA1, VA2, VB2) and GABAergic (VD) motor neurons, and other neurons (other). 84.8% (n=28/33) of VA and VB inputs are adjacent to DD spines. 33.3% (4/12) of spines directly oppose a single presynaptic partner (black arrowhead); the majority of spines (66.7%) appose more than one terminal (clear arrowhead). Scale bar = 2 µm.

D. Frequency of spines contacted by cholinergic presynaptic sites detected by Airyscan imaging (contacted, 84.1 ± 6.4% vs not contacted, 15.8 ± 6.4%, n = 128 spines from 7 worms) or by EM (contacted, 100% vs not contacted, 0%, n = 12 spines from 1 worm).

E. Schematic of DD presynaptic boutons (top) and postsynaptic spines (dashed box) with distal iAChR puncta (green dots) on the ventral side.

F1-3. iACh receptor subunit ACR-12::GFP (green) localizes to LifeAct::mCherry-labeled DD spines (magenta). Asterisk marks DD cell body. Arrows in F1 denote spines without visible ACR-12::GFP clusters. Scale bars = 1 µm.

G-H. Locations of ACR-12::GFP puncta on DD spines. > 95% of spines have at least one ACR-12::GFP cluster (n = 127 spines from 8 young adult worms). Examples of spines from each category. Scale bars = 1 µm. (H) Examples of spines with more than one ACR-12::GFP cluster. White arrowheads point to ACR-12::GFP clusters at DD spines. Scale bar = 200 nm.
I-K. NATF labeling of endogenous iAChR auxiliary protein LEV-10 in DD neurons (I) detects LEV-10 localization to spines with (J) all spines showing NATF LEV-10::GFP puncta (n = 159 spines from 7 worms). Scale bars = 500 nm. (K) Example of spines with endogenous LEV-10 clusters. Scale bar = 200 nm.

Figure 3. SER-like structures and ribosomes in spines and dendritic shaft.

A. 3D EM reconstruction of DD1 dendrite reveals Smooth Endoplasmic Reticulum (SER)-like cisternae (yellow) in the dendritic shaft and some spines (black arrowheads). Most spines lack SER-like structures (clear arrowheads). Scale bar = 2 µm.

B. Serial cross-sections (328-355) of the ventral nerve cord show spines (Sp) budding from DD1 (blue) dendritic shaft (Sf). ‘Pre’ labels presynaptic terminals from a cholinergic VA neuron (pink); m, muscle arm (purple). (Scale bar = 200 nm) B’. Magnified region of section 332. Arrow points to SER-like structure in DD dendritic spine (Scale bar = 100 nm). B”. Section 333. Arrow points to polysome-like structure in DD dendritic spine (Scale bar = 100 nm). B”’. Volumetric reconstruction of DD1 dendrite (gray) and SER-like structures (yellow). Dashed lines denote location of each section shown in B. Scale bar = 500 nm.

C. Airyscan imaging shows GFP-labeled ribosomal protein, RPS-18 (Noma et al. 2017), localized to DD spines (arrowheads) labeled with LifeAct::mCherry. Scale bar = 2 µm.

D. Volumetric EM reconstruction of a portion of the DD1 (25 µm) dendrite shows mitochondria (purple) in the shaft (arrowheads) but not in spines (clear arrowheads).

Figure 4. Coordinated Ca** transients in dendritic spines.

Series (time in seconds) of live-cell images of cytosolic (A) mCherry and (B) GCaMP6s in DD postsynaptic spines reveals (C) dynamic GCaMP6s vs stable mCherry signals, n = 11 movies, 31 spines. D. GCaMP6s transients occur in neighboring spines more frequently (> 50%) than predicted by a random distribution (KS test, p<0.0001). Scale bars = 500 nm.
VA motor neuron activation is correlated with Ca\(^{++}\) transients in DD1 spines. GCaMP6s fluorescence imaged (at 0.5 sec intervals) with periodic optogenetic activation (at 2.5 sec intervals) of ceChrimson, detects Ca\(^{++}\) transients with (E) ATR (n = 14) but not with carrier (F) (EtOH) (n = 12). Circles at the top right corner of each panel correspond to red light on (red) for ceChrimson activation vs off (black). Scale bars = 500 nm. (G) GCaMP6s fluorescence throughout the 15 sec recording period plotted for ATR (green) (n = 14) vs carrier (EtOH) (black) (n = 12). (H) Plot of the standard deviation (SD) of GCaMP6s signal at each time-point shows that fluctuations in the ATR-treated samples (green boxes) are significantly greater than in EtOH controls (black circles), F-test, *= p < 0.0001. Additionally, SDs are significantly different between timepoints before and after light activation (T\(_6\) vs T\(_7\) and T\(_{11}\) vs. T\(_{12}\)). F-test, ^ = p < 0.05. ND = not determined. Purple bars denote interval with red-light illumination (e.g., ceChrimson activation).

Ca\(^{++}\) propagation to neighboring spines depends on intracellular Ca\(^{++}\) stores. (I) Graphical representation of the experimental paradigm: 561 nm laser excitation at a single spine (excitation area, pink) with subsequent GCaMP6s changes recorded from three different regions of interest at: (1) the excited spine, (2) an adjacent spine and (3) a distant spine. (J) In the wild type, significant Ca\(^{++}\) changes are detected at the excited spine (p = 0.0182), adjacent spine (p = 0.0319) and distant spine (p = 0.0402), n = 15 videos. (K) In ryanodine-treated worms, significant Ca\(^{++}\) changes are not detected at the excited spine (p > 0.999), at an adjacent spine (p = 0.924) or at a distant spine (p = 0.552), n = 16 videos.

Figure 5. Cholinergic activity regulates spine density during development.

A. Synaptic vesicles are loaded with acetylcholine (ACh) by the vesicular acetylcholine transporter (vAChT/UNC-17). Acetylcholinesterase enzymes (ACE) degrade synaptic ACh.

B-E. Spine density increases throughout development in the wild type (WT) but not in unc-17(e113) mutants whereas spine density is precociously elevated in ace-1(p1000);ace-2(g72)
mutants. Representative images of (B) WT, (C) unc-17(e113) and (D) ace-1(p100); ace-2(g72).

Scale bars = 2 µm. See Figure S4 for scatter plots for E.

F-I. Reduced ACh signaling in cholinergic motor neurons decreases postsynaptic spine density.

F. Expression of Histamine-gated Chloride channels and mCherry in cholinergic (VA and DA) motor neurons (punc4::HisCl::SL2::mCherry) (Pokala et al. 2014) vs DD motor neurons labeled with LifeAct::GFP shows (G) DD spines (green) extending to the ventral process of the VA5 motor neuron (magenta). Note dorsal placement of DA4 axon.

H. Synchronized L2 larvae were transferred to either histamine or control plates at T29 (hours post-laying) for growth up to the L4 stage (~T50), See Methods.

I. DD spine density at the L4 stage is reduced by growth on histamine (2.58 ± 0.6) vs control (3.49 ± 0.9). T-test, ** = p<0.01, n > 17. Scale bars = 1 µm.

J-M. Temporal activation of A-class cholinergic motor neurons increases spine density.

J. Cholinergic motor neurons (e.g., VA4) express ceChrimson (Schild and Glauser 2015) and mCherry (punc4::ceChrimson::SL2::mCherry). LifeAct::GFP marks DD2.

K. DD spines (green) extend ventrally toward VA process (magenta).

L. Synchronized L2 stage larvae (T27, hours post-laying) were transferred to ATR or control plates (see Methods) for 6 hours (until T33, ~L3 stage) and exposed to red-light pulses vs control group grown in the dark.

M. Exposure to red-light for 6 hours elevates spine density at the L3 stage (3.9 ± 0.8) vs control (2.59 ± 0.8). T-test, *** is p<0.001, n>10. Scale bars = 1 µm.

SUPPLEMENTARY INFORMATION

Figure 1 – Figure Supplement 1. Dendritic spines adopt distinct morphologies.

A. Spine densities determined from young adult DD neurons labeled with mCherry (3.68 ± 0.8 spines/10µm), LifeAct::GFP (3.43 ± 1.2spines/10µm) and MYR::mRuby (3.09 ± 0.8...
spines/10µm) are not significantly different and are comparable to spine density determined by
3D EM reconstruction of DD1 (4.2 spines/10µm) (dashed blue line). One-way ANOVA between
mCherry, LifeAct::GFP and MYR::mRuby (p>0.05), n>16. Data for mCherry and LifeAct::GFP
also appears in Figure 1F.

B. Example of DD spines labeled with membrane bound marker, myristolated mRuby
(MYR::mRuby).

C. Frequency of spines by type labeled with LifeAct::GFP: Thin/Mushroom (55.5 ± 14.5%),
Filopodial (10.3 ± 8.70%), Stubby (18.8 ± 10.7%), Branched (15.4 ± 6.01%). Dashed blue lines
denote frequency for each spine type from EM reconstruction of DD1: Thin/Mushroom (58.3%),
Filopodial (25%), Branched (8.3%) and Stubby (8.3%).

D. Frequency of spines by type, labeled with MYR::mRuby: Thin/Mushroom (52.2 ± 16.5%),
Filopodial (5.68 ± 7.0%), Stubby (33.1 ± 14.8%), Branched (9.02 ± 9.6%). Unpaired T-test
shows that frequency of Filopodial (p=0.0339); Stubby (p=0.0009) and Branched (p=0.011)
classes labeled with MYR::mRuby is differs from frequency of spine types detected with with
LifeAct::GFP labeling. Data for LifeAct::GFP labeled spines also shown in Figure S1C.

Figure 1 – Figure Supplement 2. Dendritic spines display a dynamic actin cytoskeleton.

A-E. Live-imaging of (A,B) LifeAct::GFP and (C,D) mCherry-labeled DD spines of L4 stage
larvae reveals dynamic LifeAct::GFP vs stable cytosolic mCherry signals.

B,D. Normalized traces of LifeAct::GFP and mCherry fluorescence from live imaging. Different
shades of green and red lines are used to allow visualization of individual traces. E. Comparison
of standard deviations of all traces for each timepoint reveals significantly different variance
between LifeAct::GFP vs cytosolic mCherry markers (F-test, * is p < 0.0001 from T₃ to T₃₀ and $ is p < 0.05 at T₉₉, n > 51 traces). Scale bar = 500 nm.

F. Regulators of actin polymerization define spine density. (Left) Representative images (young
adults) of DD spines for WT (wild type), toca-1 (tm2056), empty vector (RNAi control),
wave/wve-1 (component of WRC) RNAi and p21/arx-5 (component of Arp2/3 complex) RNAi. (Right) WT young adults show 3.53 ± 1.0 spines/10 µm vs toca-1 (tm2056) with 2.77 ± 1.1 spines/10 µm (t test, *** is p<0.001). Spine density is reduced with RNAi of wave/wve-1 (2.24 ± 0.7 spines/10 µm) or p21/arx-5 RNAi (2.20 ± 0.7 spines/10 µm) versus Empty Vector (E.V.) control (2.9 ± 0.4 spines/10 µm). One-way ANOVA with Dunnett’s multiple comparison test, ** is p<0.01, n > 9 worms. Measurements are Mean ± SD. Scale bar is 1 µm.

G. TOCA-1 functions cell-autonomously in DD neurons. wild-type young adults show 3.53 ± 1.0 spines/10 µm vs 2.35 ± 0.9 spines/10 µm in toca-1(tm2056), which is rescued with TOCA-1a expression in DD neurons (Pflp-13::TOCA-1a::mCherry) = 3.05 ± 0.8 spines/10 µm. One-way ANOVA with Dunnett’s multiple comparison test. n.s.= not significant. ** is p < 0.01. wild type and toca-1(tm2056) data also appears in Figure S2F.

Figure 4 – Figure Supplement 1. Dendritic Ca++ transients depend on intracellular Ca++ stores.
A. Intrinsic GCaMP6s transients are dramatically reduced in unc-68(r1142) mutants. Neither (B) Control (EtOH only) or (C) ryanodine-treated (ryanodine + EtOH) worms show significant Ca++ changes after 561nm local excitation (n > 6 videos).

Figure 5 – Figure Supplement 1. Synaptic activity regulates postsynaptic DD spine density.
A. Spine density (spines/10 µm) increases throughout development in the wild type (WT). L3 (2.5 ± 0.9), (early L4) eL4 (3.1 ± 0.9), L4 (3.4 ± 0.9) and (Young Adult) YA (3.4 ± 1.1). One-way ANOVA of all groups vs L3 shows that spine densities at L4 and YA stages are different from L3. *** is p<0.001. Data for YA are the same as in Figure 1F and S1A for wild-type LifeAct::GFP.
B. Spine density (spines/10 um) does not increase during development with reduced cholinergic signaling in *unc-17(e113)*. L3 (2.91 ± 1.0), eL4 (2.76 ± 0.9), L4 (2.32 ± 0.87) and YA (2.84 ± 0.9). One-way ANOVA of all groups against L3 stage shows no statistically significant difference during development.

C. Spine density (spines/10µm) is elevated throughout development in acetylcholinesterase deficient *ace-1(p100);ace-2(g72)* mutant animals. L3 (3.83 ± 1.2), eL4 (4.17 ± 0.8), L4 (3.16 ± 1.2) and YA (3.49 ± 1.1). One-way ANOVA of all groups against L3 stage shows no statistically significant difference during development.

D. Spine density (spines/10µm) does not increase during development in *unc-31(e169)* mutants with impaired dense core vesicle release L3 (2.18 ± 1.0), eL4 (2.45 ± 1.1), L4 (2.65 ± 0.9) and YA (1.89 ± 0.8). One-way ANOVA of all groups against L3 stage shows no statistically significant difference during development.

E. Spine density (spines/10µm) does not increase during development in *unc-31(e169)* and shows lower spine density than wild type (WT) at the Young Adult (YA) stage. T-test at each timepoint between genotypes, **** is p<0.0001. Measurements are mean ± SD.

Figure 5 – Figure Supplement 2. Ventral D-GABAergic motor neurons have dendritic spines

A. VD motor neurons (green) are located in the ventral nerve cord. In the adult, VD presynaptic boutons (oblong ovals) innervate ventral muscles (gray cells) and VD postsynaptic termini (spines) receive cholinergic input from DA and DB motor neurons (magenta) on the dorsal side. B-D. GABAergic VD neurons show dendritic spines. GABA neurons were labeled with LifeAct::GFP (*Punc-25::LifeAct::GFP*) and DD neurons expressed miniSOG (*Pflp-13::miniSOG::SL2::BFP*).

B. Synchronized L1 larvae were exposed to blue light for 45 minutes during T_{16}-T_{17} (hours after egg laying) to ablate DD neurons and maintained at 20°C until the adult stage.
C. Airyscan imaging of the dorsal cord in young adults (T₆₀) (hours after egg laying) shows spine-like protrusions on VD neurons.

C'. Inset from C. Scale bars = 1 µm.

D. VD spine density (3.01 ± 1.43 spines/10µm), n = 17. Dashed blue line represents spine density detected in VD2 with 3D EM (3.33 spines/10µm).

E. 3D EM reconstruction shows mitochondria in the shaft of VD dendrites (arrows) but not in VD spines (clear arrowheads).

F. Volumetric EM reconstruction of a portion of the VD2 dendrite (27 µm) in the dorsal nerve cord (gray) detects contacts with 36 presynaptic termini from axons of the cholinergic (DA, DB or AS) and GABAergic (DD) motor neurons. 50.0% (n=11/22) of DA and DB inputs are adjacent to VD spines. 44.4% (4/9) of spines directly oppose a single presynaptic partner (black arrowhead) or more than one terminal (clear arrowhead). One VD spine does not appose any presynaptic density (gray arrowhead). Scale bar = 2 µm.

VIDEO DESCRIPTIONS

Video 1. In vivo spine dynamics
A thin spine extends a lateral projection to form a branched spine. Snapshots are displayed in Figure 1J. Pseudo-colored with Rainbow Dark LUT.

Video 2. LifeAct::GFP dynamics
LifeAct::GFP fluorescence at DD spines (white arrows) fluctuates between bright and dark signals. Asterisk labels DD cell body and yellow arrow labels transient protrusion and commissures. Scale bar = 5 µm. Pseudo-colored with Rainbow Dark LUT.

Video 3. Cytosolic mCherry dynamics
Cytosolic mCherry at DD spines (white arrows) shows modest changes in fluorescence over time. Yellow arrows label transient protrusions and commissures. Scale bar = 5 µm. Pseudo-colored with Rainbow Dark LUT.

Video 4. DD1 dendritic spine receives input from cholinergic neurons
3D EM reconstruction shows that a single DD spine (gray) contacts presynaptic terminals of VA (blue) and VB (pink) neuron. Muscle arms labeled in green.

Video 5. 3D EM reconstruction of DD1 dendrite
DD1 dendrite (gray) has dendritic spines that contain ER (yellow) but no mitochondria (pink).

Video 6. Intrinsic Ca** waves in DD spines.
GCaMP6s (green, center panel) detects spontaneous Ca** transients in the DD1 dendritic shaft and spines (arrows). Note the relatively constant cytosolic mCherry signal (magenta, left panel) GCaMP6s and mCherry signals are merged in the right panel. Scale bar = 2 µm. Pseudo-colored with Rainbow Dark LUT.

Video 7. Cholinergic activation triggers Ca** transients in DD spines
Three examples of GCaMP6s changes recorded with activation of cholinergic neurons every 2.5 seconds (pink circle) on ATR-grown worms. Scale bar = 2 µm. Pseudo-colored with Rainbow Dark LUT. Arrows denote spines.

Video 8. Cholinergic activation does not trigger large changes in cytosolic Ca** in DD spines in the absence of ATR.
Three examples of GCaMP6s changes recorded after activation of cholinergic neurons every 2.5 seconds (pink circle) in control worms grown in the absence of ATR. Scale bar = 2 µm.
Video 9. Local cholinergic activation triggers Ca\(^{++}\) transients in neighboring spines

Top: Activation of cholinergic neurons at a single spine (white arrow) triggers Ca\(^{++}\) changes at adjacent (red arrow) and distant spines (yellow). CeChrimson::SL2::3xNLS::GFP labels DA and VA nuclei in green (black asterisks). The DD1 cell soma is labeled. Scale bar = 5 µm.

Bottom: Traces of local Ca\(^{++}\) changes at excited (red), adjacent (white) and distant (yellow) spines over time. Vertical yellow bar denotes the 561nm excitation window. Note that GCaMP6s signals during the period of 561 nm excitation are interpolated from signals measured immediately before and after excitation.

SOURCE DATA FILES

Data for Figure 1E
Individual measurements of spines/shaft intensity ratios labeled with cytosolic mCherry or LifeAct::GFP.

Data for Figure 1F and Figure Supplement 1A
Density (in 10 µm) of spines labeled with Cytosolic mCherry, LifeAct::GFP or MYR::mRuby.

Data for Figure 1 – Figure Supplement 1C-1D.
Frequency of spines by type (i.e. Thin/Mushroom, Stubby, Filopodial and Stubby) labeled with LifeAct::GFP or MYR::mRuby.

Data for Figure 3C
Number of spines labeled with LifeAct::mCherry and proportion that are also marked with DD::RIBOS (Pflp-13::GFP::RPS-18) (Noma et al. 2017) to visualize ribosomes.

Data for Figure 4A-C
Cytosolic mCherry and GCaMP6s normalized fluorescence sampled every 2 seconds to detect intrinsic Ca\(^{++}\) changes in DD dendrites.

Data for Figure 4E-H
Cytosolic mCherry and GCaMP6s normalized fluorescence sampled every 200 ms to detect Ca\(^{++}\) changes in response to 561 nm activation on the field of view.

Data for Figure 4I-K and Figure Supplement 1B-C
Normalized GCaMP6s fluorescence sampled every 2 s to detect Ca\(^{++}\) changes in response to 561 nm activation at a single spine. GCaMP6s changes were recorded at the excited spine, neighboring spine and distant spine in the presence or absence of ATR (i.e. ATR or EtOH) with or without 1mM Ryanodine.

Data for Figure 5B-E and Figure Supplement 1
Spine density for wild type and synaptic mutants (i.e. unc-17, ace-1;ace-2 and unc-31) across four different developmental stages (L3, early L4, L4 and Young Adult).

Data for Figure 5F-K
Spine density recorded after temporal elevation of cholinergic activity (Punc-4::ceChrimson::SL2::mCherry) or decrease (Punc-4::HisCL::SL2::mCherry).

Data for Figure 5 - Figure Supplement 2
Spine density of VD neurons labeled with Punc-25::LifeAct::GFP (See Methods).
A. Schematic diagram showing the positions of different structures.

B. Fluorescence microscopy images of lines with different markers.

C. Similar images showing another set of markers.

D. Diagram illustrating the measurement of protrusion/ shaft ratio.

E. Graph showing the percentage distribution of cytosolic and LifeAct::GFP.

F. Graph depicting the spine density for cytosolic and LifeAct::GFP.

G. LifeAct::GFP images showing different regions marked by squares.

H. Diagram illustrating the types of protrusions as filopodia, mushroom, stubby, and branched.

I. Close-up images of different protrusion types: filopodium, thin/mushroom, stubby, branched.

J. Time-lapse images with arrows indicating changes over time.
C. Synaptic input onto DD postsynaptic dendrite

D. Percentage (%)

E. DD::LifeAct::mCherry
DD::ACR-12::GFP

F1.

F2.

G. n=127
- ACR-12 at tip, 68.5%
- ACR-12 along spine, 11.8%
- ACR-12 at tip and along spine, 15%
- No ACR-12, 4.72%

H. ACR-12::GFP

I. DD::LifeAct::mCherry
NATF DD LEV-10

J. n=159
- LEV-10 at tip, 74.5%
- LEV-10 along spine, 7.8%
- LEV-10 at tip and along spine, 17.7%
- No LEV-10, 0%
A. SER-like structures in DD postsynaptic dendrite

B. 328/500 330/500 332/500 339/500 341/500 343/500 355/500

C. LifeAct::mCherry GFP::RPS-18 Merge

D. Mitochondria in DD postsynaptic dendrite
A. LifeAct::GFP
B. n=52
C. mCherry
D. n=69
E. SD of spine fluorescence
F. LifeAct::GFP
G. RNAi

A. LifeAct::GFP
B. n=52
C. mCherry
D. n=69
E. SD of spine fluorescence
F. LifeAct::GFP
G. RNAi
A.

unc-68 (r1162)

- mCherry
- GCaMP6s

B. Control

C. Ryanodine
E. Mitochondria in VD neurons

F. Synaptic Input