
C. elegans locomotion: small circuits, complex
functions
Mei Zhen1,2,3 and Aravinthan DT Samuel4

Available online at www.sciencedirect.com

ScienceDirect
With 302 neurons in the adult Caenorhabditis elegans nervous

system, it should be possible to build models of complex

behaviors spanning sensory input to motor output. The logic of

the motor circuit is an essential component of such models.

Advances in physiological, anatomical, and neurogenetic

analysis are revealing a surprisingly complex signaling network

in the worm’s small motor circuit. We are progressing towards a

systems level dissection of the network of premotor

interneurons, motor neurons, and muscle cells that move the

animal forward and backward in its environment.
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Invertebrates have long been fruitful model systems to

pursue a computational understanding of rhythmic motor

circuits. The small numbers of neurons, defined motor

patterns, and physiological accessibility of the stomatogas-

tric nervous system of the crustacean and the locomotion

circuit of the leech have driven decades of fundamental

experimental and theoretical work on underlying mecha-

nisms [1,2]. By comparison, understanding the principles

of rhythm generation during locomotion in Caenorhabditis
elegans, one of the most fruitful invertebrates for genetic

analysis, has lagged behind. Computational models have

been proposed based on the known anatomy of the motor

circuit but much speculation about signaling properties [3].

New tools for physiological analysis, including genetic

sensors for calcium, light-gated regulators for cell activity,

electrophysiology, and quantitative behavioral analyses,
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have begun to allow functional dissection of the molecules,

synapses, and cells of the C. elegans motor circuit. Here, we

present current understanding of the motor circuit that

drives backward and forward undulatory movement. We

highlight recent advances, remaining questions, and hy-

potheses about the neuromuscular machinery that drives C.
elegans’ motor behavior.

The anatomy and wiring of motor neurons
Most motor neurons that drive undulatory locomotion

along the C. elegans body — 22 in newly hatched L1 larvae

and 75 in subsequent developmental stages — are dis-

tributed along the ventral nerve cord (VNC). VNC motor

neurons are grouped into five classes, each with different

neuron numbers: A (21), B (18), D (19), VC (6), and AS

(11). The A, B, and D classes are further divided as the

dorsal and ventral muscle innervating subclasses, DA (9),

VA (12), DB (7), VB (11), DD (6), and VD (13) [4]. The

newly hatched larvae have only the DA, DB and DD class

motor neurons (see Figure 1a,b).

Although C. elegans is not obviously anatomically seg-

mented, the adult motor circuit exhibits a general pattern:

six repeating units of �12 motor neurons and �12 muscle

cells distributed along the adult body [5,6]. This organi-

zation is proposed based on electron microscopy (EM)

reconstruction of a few such motifs in adults [5,7]. Motor

neurons of the same class are connected to their neighbors

by gap junctions. The A and B-type neurons make cholin-

ergic excitatory neuromuscular junctions (NMJs) with

muscle cells [8,9]. The D-type neurons make GABAergic

inhibitory synapses to muscle cells [10]. The D-type

GABAergic neurons are postsynaptic to the cholinergic

A and B-type motor neurons that innervate muscles of the

opposite side (see Figure 1a,b).

C. elegans was the first animal whose connectome was

mapped in near entirety using serial-section EM [11].

The adult wiring diagram was assembled from partially

overlapping datasets from five animals. The wiring of the

VNC and dorsal nerve cord (DNC), where a majority of

NMJs reside, was assembled in the anterior portion using

one animal. A posterior portion was assembled from other

animals, including data from a male. The original data

obtained by John White and coworkers have been rea-

nalyzed [12,13] and revisited through other studies, in-

cluding an ongoing proofreading project (Steven Cook,

David Hall, and Scott Emmons, personal communica-

tions). However, these efforts will not compensate for the

missing serial sections for 39 neurons, which include
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Figure 1
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The C. elegans motor circuit. (a) Complex signaling. A simplified representation of one structural motif of the C. elegans motor circuit. It illustrates

some connectivity between cholinergic motor neurons (B-type, for forward movement; A-type, for backward movement) and GABAergic neurons

(D-type), and muscle cells. Ionotropic and metabotropic cholinergic and GABAergic receptor subunits in the motor neurons and muscle cells that

have been identified to play a role in excitatory and inhibitory input balance are depicted (see text). Gap junctions between motor neurons and key

premotor interneurons (AVA, AVB) play a role in stabilization and transition between backward and forward movement. Tyraminergic and

peptidergic signaling from sensory and interneurons (DVA, RIM) regulate motor neuron activity patterns via GPCRs. (b) Developmental remodeling.
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21 motor neurons [7]. It will be important to fill the

remaining gaps of the adult motor circuit. It will also

be important to obtain wiring diagrams that have yet to be

mapped. This includes those of the developing larvae

(L1–L4 stage), dauer (a diapautic larval stage induced by

unfavorable growth conditions), and males (only a poste-

rior portion of an adult has been mapped) [14].

Distinct motor neuron pools contribute to
directional movements
Undulation is largely organized by the A-type and B-type

cholinergic neurons and the D-type GABAergic motor

neurons. Our initial understanding of their roles was

established by laser ablation [15]. In the newly hatched

larvae (L1), where only the DA, DB and DD class motor

neurons are present, killing a portion of the DA and DB

motor neurons disrupted the larvae’s ability to move

backward and forward, respectively. By contrast, ablating

a portion of the DD motor neurons severely disrupted

movement in both directions. These results provide the

first evidence for separate cholinergic motor neuron pools

for forward versus backward movement. While the nu-

merical increase of adult motor neurons discouraged

similar laser ablation analyses of the adult motor circuit,

a similar role of the same class of cholinergic motor

neurons for directional locomotion was substantiated by

laser ablation analyses of their input premotor interneur-

ons. Cholinergic A-type and B-type motor neurons are

postsynaptic to five pairs of premotor interneurons: AVA,

AVB, AVD, AVE, and PVC [11]. AVB and PVC connect

mainly to the B-type motor neurons, and their co-ablation

led to near complete impairment of forward movement.

AVA, AVD, and AVE connect mainly to the A-type motor

neurons, and killing them, in particularly AVA, profound-

ly disrupts backward movement [15,16]. Hence, across

development, the A-type and B-type cholinergic motor

neurons differentially contribute to backward and forward

movements.

The role of the D-type GABAergic motor neurons is less

defined and may change during development (Figure 1b).

In adults, because the D-type motor neurons are postsyn-

aptic to the A-type and B-type cholinergic motor neurons

that innervate muscles on the opposing side, they have

been proposed to play a role in contralateral inhibition,

similarly to analogous neurons in the nematode Ascaris [17],

during forward and backward movement [11]. Consistent

with this notion, killing VD motor neurons causes ventral

biased bending, and killing DD motor neurons causes

dorsal biased bending during locomotion [18��]. Optoge-

netic stimulation or inhibition of DD motor neurons also

induces ventral or dorsal bending, respectively [18��].
( Figure 1 Legend Continued ) During adult locomotion, alternating excitati

and D-type motor neurons during forward movement and is mediated by A-

only the DA, DB, and DD motor neurons are present, and the DD motor neu
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However, bending is not abolished by ablating either

VD or DD [18��], implying a modulatory, not mandatory

role for contralateral inhibition in adult movement. In

fact, D-type motor neurons are not even necessary for

forward locomotion: in the absence of the GABA-syn-

thesizing glutamate-decarboxylase (UNC-25), unc-25
mutants exhibit fairly normal forward locomotion (al-

beit being slightly hyper-contracted), and only display

dampened backing [10]. This contrasts with the re-

quirement of DD motor neurons for both forward and

backward movement in the L1 larvae [15], implying a

developmental remodeling.

In vertebrates, GABAergic synapses switch from being

excitatory at early stages of development to inhibitory

upon increased expression of chloride exporters that

reverses the chloride gradient across the neuronal mem-

brane [19]. In C. elegans, D-type motor neurons also

remodel during early development, but this involves a

more complex and not yet understood process. The L1

larvae have six GABAergic D-type motor neurons that

persist as the adult DD motor neurons. Partial EM

reconstruction at the anterior segment of two L1 larvae

revealed ventral NMJs by DD motor neurons, instead of

dorsal NMJs that characterize their adult wiring [20]. The

ventral NMJs by L1 DDs were confirmed using presyn-

aptic markers [21]. DD motor neurons reverse their axon-

dendrite polarity to innervate dorsal muscles in the L2

larval stage and beyond, a process that remains poorly

understood [21,22]. The physiological nature of GABAer-

gic signaling in L1 larvae has not yet been confirmed.

However, they may be inhibitory as in adults, because

acute killing of L1 DD motor neurons by KillerRed

induced strongly biased ventral coiling [23]. Surprisingly,

the inhibitory nature of GABA signaling may be main-

tained throughout the L1 stage despite the recent obser-

vation that the postsynaptic muscles likely reverse the

chloride gradient at mid-L1 [24]. Hence, while the two

main cholinergic motor neuron classes (A and B) are

dedicated to generate forward and backward movements

from birth, the GABAergic D-type motor neurons exhibit

substantial developmental plasticity that allow them to

modulate locomotion patterns with different mechanisms

at different life stages.

Signaling between motor neurons and
muscles balances the excitatory and
inhibitory drive
In vertebrates, the interplay between excitation and

inhibition that establishes the phasic motor activity pat-

terns occurs at higher levels, for example, between glu-

tamatergic and GABAergic/glycinergic interneurons that
on and inhibition of dorsal and ventral muscles is mediated by B-type

type and D-type motor neurons during backward movement. In L1,

rons innervate the ventral muscle.

Current Opinion in Neurobiology 2015, 33:117–126
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communicate with the cholinergic motor neurons to co-

ordinate muscle contraction [25,26]. The small nervous

system of C. elegan is compact — only two to three layers

of interneurons separate the sensory periphery to motor

neurons [27–29]. Although the motor neuron layer con-

tains only a handful of cell types, neurogenetic analyses

are revealing a complex molecular signaling network that

may augment its computational power.

The C. elegans genome contains twenty-nine acetylcholine

receptor (AchR) and four GABA receptor subunit-

encoding genes [30–32]. The potential for receptor

diversity in the motor circuit is enormous, and its signifi-

cance is only being unraveled. Patch-clamp recordings of

body wall muscles allowed direct demonstration of dual

excitatory and inhibitory signaling at the neuromuscular

system. Specifically, muscles elicit the GABA-mediated

and Ach-mediated postsynaptic currents by the inhibitory

UNC-49 ionotropic GABAA receptors and two classes of

excitatory, ionotropic acetylcholine receptor complexes

with different pharmacological properties (the levamisole

L-type and nicotine N-type AchRs) [8,33–36].

A third class of AchRs reside at motor neurons. Neuronal

ionotropic acetylcholine receptors (nAchRs) resemble the

L-type AchRs in composition, but involve neuron-specif-

ic alpha and non-alpha subunits, and are insensitive to

levamisole [36,37�,38�,39]. Unexpectedly, nAchRs fur-

ther diverge in composition and localization: they are

dendritic in all motor neuron classes, but are restricted

postsynaptically only at GABAergic motor neurons. At least

one non-alpha nAChR subunit (ACR-2) is unique for

cholinergic motor neurons (A-type and B-type), predict-

ing the existence of additional neuron-subclass AchR

subunits and regulators. nAchRs regulate excitatory and

inhibitory inputs at the neuromuscular system by directly

effecting motor neuron activities [37�,39]. Null muta-

tions for the cholinergic motor neuron-specific subunit

ACR-2 lead to not only reduced cholinergic inputs to

muscles, but also reduced GABAergic inputs. Gain-of-

function acr-2 mutations increase cholinergic motor neu-

ron inputs, as well as exert an inhibitory effect on

GABAergic inputs. All nAchRs contain the ACR-12 alpha

subunit, but the loss of ACR-12 from GABAergic motor

neurons alone lead to increased excitability at the neu-

romuscular system due to a reduced inhibitory inputs

[38�]. In summary, nAchRs are not only required in

excitatory and inhibitory motor neurons to maintain their

respective activities, nAchRs in cholinergic motor neu-

rons further function non-cell autonomously to regulate

the activity of GABAergic motor neurons.

Through AchRs and GABA receptors that function both

at motor neurons and body wall muscles, excitatory and

inhibitory signals converge at muscles to affect body

bending. A standing puzzle is the surprisingly subtle

changes in motor patterns upon even drastic genetic
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perturbation of the inhibitory versus excitatory input

balance (e.g., the complete removal of GABAergic sig-

naling). The diversity of receptors indicates an intricate

network of signaling relationships throughout the motor

circuit that can be subjected to fine-tuning and modula-

tion (Figure 1a), and may permit similar motor perfor-

mance to be generated in a variety of mutant backgrounds

and environmental conditions. The robustness of the

C. elegans motor output parallels similar observations of

the robust motor performance in other invertebrates, for

example, the lobster stomatogastric ganglion [40,41].

Establishing the full network interactions that drive

and stabilize the performance of the motor circuit will

require a systems level approach.

Neuromodulation by metabotropic signaling
and feedback inhibition
Neurotransmitter-activated, extrasynaptic G-protein cou-

pled receptors (GPCRs) further extend the signaling

capabilities of motor neurons by mediating feedback

inhibition [42]. The C. elegans genome contains three

muscarinic acetylcholine receptors (mAChR) and two

GABAB receptor subunits [31]. The GAR2 mAChR is

expressed in both cholinergic and GABAergic motor

neurons, and contributes to a feedback inhibition of

the cholinergic motor neuron activity when acetylcholine

levels are elevated [42]. The GBB-1/GBB-2 heterodi-

meric GABAB receptors are specifically expressed by

cholinergic motor neurons. Cholinergic activation of

the GABAergic motor neurons stimulates GABA release,

which, through these GABAB receptors, provides an

alternative feedback inhibition on cholinergic motor

neurons [42,43].

In addition to neurotransmitters, neuropeptides can reg-

ulate the excitatory and inhibitory input balance at the

neuromuscular system [44]. The gain-of-function muta-

tions in ACR-2, which amplify excitatory inputs and

reduce inhibitory inputs to muscles [37�,44], exhibit

periodic convulsions due to synchronization of choliner-

gic motor neuron activities [45]. Such a convulsion is

partially offset by an increased production of FMRFa-

mide neuropeptides, FLP-1 and FLP-18, from choliner-

gic motor neurons. This convulsion is also partially

mitigated by increasing the expression of GPCRs —

NPR-1 in neurons and NPR-5 in muscles. The loss of

a common processing enzyme for most neuropeptides

EGL-3 also partially mitigates convulsion [44]; hence

additional neuropeptides may contribute to homeostatic

regulation.

Neuromodulation has long been known to profoundly

affect the invertebrate motor systems. In C. elegans, specific

monoamines and neuropeptides have recently been shown

to modify motor circuit output. For example, the stretch-

activated mechanosensory neuron DVA regulates bending

amplitude during locomotion [46]. This modulation
www.sciencedirect.com
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involves peptidergic modulation of cholinergic motor neu-

rons: DVA releases the NLP-12 neuropeptide, which

potentiates cholinergic NMJs via the CKR-2 GPCR

[47��]. This points to a mechanosensory gain control

mechanism in the motor circuit. Perhaps the most pro-

found example of neuromodulation in the motor circuit is

that a motor step in the escape response depends on

monoaminergic modulation [18��]. Tyramine, released

from the RIM premotor neurons following the anterior

touch, augments the amplitude of the ventral bend to

reorient C. elegans away from the stimulus. The SER-2

GPCR tyramine receptor is specifically expressed in the

VD GABAergic motor neurons; its activation inhibits

GABAergic inputs to ventral muscles, allowing deep

bending.

Different locomotion patterns require a homeostatic and

dynamic modulation between excitatory and inhibitory

inputs to muscles. The large inventory of signaling mole-

cules and receptors in the motor circuit, and particularly

the feedback loops that connect them, poses both chal-

lenges and opportunities in modeling dynamic motor

behaviors. Realistic computational models will need de-

fined dynamics of signaling relationships throughout the

motor circuit. To define those relationships, we need

methods to measure motor neuron activities in moving

animals with comparable sensitivity to electrophysiologi-

cal recordings from muscle cells [8,48��]. New ultrafast

genetically encoded probes for calcium dynamics as well

as for membrane potential are promising, but still need to

be improved for systematic dissection of motor circuit

dynamics [49–54].

Reciprocal activation of the A-class and
B-class motor neurons by premotor
interneurons to transit between directional
movements
The first successful in vivo calcium imaging in intact

animals was achieved using C. elegans and a ratiometric

genetic calcium sensor cameleon [55]. The relatively low

signal-to-noise ratio of early versions of genetic calcium

sensors required animals to be immobilized. But small

signals precluded reliable characterization of the motor

circuit, where recording movement is essential to inter-

preting correlation and causality between the motor and

circuit activities. With steady improvement on calcium

sensors for increased signal/noise ratio and kinetics, ratio-

metric techniques for motion artifact correction [49,56],

and comparison of results from different imaging setups

and analysis algorithms, it has become feasible to examine

physiologically relevant motor circuit patterns by calcium

imaging [57�,58�,59,60��,61�,62,63].

Results from optical neurophysiology of the motor circuit

are strongly dependent on recording conditions. In an

early preparation in which the anterior half of the animal

was glued, the activity of DB, VB and VA motor neurons
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in the fixed portion was correlated with the residual

motion of the unglued posterior. In this preparation,

B-type neurons and VA neurons were active during bouts

of anticipated forward and backward movement, respec-

tively. However, the rhythmic activity expected to ac-

company wave propagation and alternating DB and VB

activity expected to accompany alternating ventral and

dorsal bending were not observed [64]. In more recent

setups where animals were allowed to crawl on agar pads

under coverslips, the alternating DB/VB and DA/VA

activity pattern change could be observed, as well as a

simultaneous increase and decrease of the A and B-type

motor neuron activity when animals switch from forward

to backward movement, and a reciprocal change when

switching from backward to forward movement [60��].

The cholinergic A-type and B-type motor neurons are

postsynaptic to premotor interneurons [11]. At the pre-

motor interneuron level, an increase of AVA (connected

to the A-class motor neurons) and AVB (connected to the

B-class motor neurons) activity coincides with the onset

of backward and forward movement, respectively, con-

sistent with their inferred role for driving backward and

forward movement [15,27,57�,59]. Calcium levels in pre-

motor interneurons however do not oscillate, even in

animals moving throughout undulation cycles. Therefore,

unlike in vertebrates, the central pattern generators for

movement may not be coded in interneurons [65]. Rather,

these premotor interneurons establish and shift between

stable forward and backward motor states.

It has long been appreciated that the motor circuit net-

work harbors substantial gap junction connectivity be-

tween premotor interneurons and motor neurons [11,66�].
Recent studies reveal that these gap junctions drive the

switch between forward and backward states [60��]. During

forward locomotion, the B-type motor neurons exhibit

higher levels of activity than the A-type motor neurons,

and vice versa during backward movement. This imbal-

ance requires the UNC-7–UNC-9 heterotypic gap junc-

tions between the AVA premotor neurons and A-type

motor neurons, with a minor involvement between the

AVB and B-type motor neurons [60��,66�]. Forward and

backward promoting premotor interneurons exhibit anti-

correlated activity changes, even when animals were re-

stricted for limited movement, indicating an intrinsic cross-

inhibition between these neurons. Information flows direc-

tionally from premotor interneurons to motor neurons,

allowing the premotor interneurons to shift the motor

circuit states. Gap junctions between AVA and A further

function as current shunts to reduce AVA excitability at

rest, biasing the circuit state for forward movement [60��].

Proprioceptive feedback to propagate
bending waves during forward movement
It has long been appreciated that the motor circuit of

C. elegans has a mechanism for proprioceptive feedback.
Current Opinion in Neurobiology 2015, 33:117–126
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The cholinergic motor neurons have long neurites devoid

of synaptic specializations. Byerly and Russell first sug-

gested that these neurites might serve a stretch-sensing

role. Several computational models of the motor circuit

predicted the requirement for stretch-sensitive feedback

to generate robust traveling waves with proper adaptation

to external load [67–70]. Optogenetic and genetic manip-

ulation of different motor neuron classes, combined with

calcium imaging and microfluidic devices that allowed

control of body bending, showed that proprioceptive

feedback occurs within the motor circuit itself, localized

to the B-type cholinergic motor neurons during forward

locomotion [71��]. When B-type motor neurons sense the

bending of anterior segments, they drive local bending.

When the dynamics of proprioceptive coupling are com-

bined with C. elegans biomechanics, a viscosity-dependent

change in undulatory wavelength can be predicted to

closely fit experimental observation [72�].

Analog to digital conversion at the NMJ
A dynamical model of the motor circuit is not sufficient.

We also need to know the nature of the transformation of

motor neuron activity into muscle activity at the NMJ.

Recent advances in electrophysiology have produced a

detailed understanding of this transformation. Because of

the absence of voltage-gated sodium channels in its ge-

nome [31], it had been thought that worms lack classical

action potentials. Steadily improving electrophysiological

preparations, however, have revealed regenerative poten-

tials with different molecular mechanisms [8,48��,73–78].

Calcium-dependent, regenerative plateau potentials have

been observed in some neurons in the head ganglion [76].

Calcium-dependent, all-or-none action potentials have

been observed in the body wall muscles of dissected

worms, and are driven by the L-type voltage-gated calcium

channel and the Kv1 voltage-gated and Ca2+/Cl�-gated

potassium channels [48��,79��]. C. elegans muscle action

potentials are longer in duration than those of the mam-

malian skeletal muscles. The resting potential of body wall

muscles (��25 mV), significantly higher than that of ver-

tebrate muscles, is intermediate between the reversal

potentials of ionotropic acetylcholine and GABA receptors

under the recording condition, allowing bidirectional mod-

ulation by excitatory and inhibitory neurotransmitters.

Cholinergic and GABAergic inputs potentiate and reduce

action potential frequency, respectively, and in turn corre-

late with muscle contraction and relaxation.

Whereas muscle cells respond in a digital manner, motor

neuron outputs appear tonic and graded [80�]. This was

demonstrated by electrophysiological recording of muscle

cells upon optogenetic manipulation of motor neurons:

tonic neurotransmitter release is lowered by hyperpolariz-

ing cholinergic motor neurons and raised by depolarizing

cholinergic motor neurons in proportion to the strength of

stimulation. The NMJs exhibit short-term plasticity.

Cholinergic synapses are depressed by high-frequency
Current Opinion in Neurobiology 2015, 33:117–126 
stimulation whereas GABAergic synapses may facilitate

before depression. How information is processed by the

C. elegans nervous system likely requires years to become

fully resolved, but if its muscular system has the ability to

convert graded inputs into digital outputs, such a prop-

erty should contribute to the neural network’s ability to

generate stable motor functions.

The biomechanics of undulatory movement
Motor circuit signaling organizes muscle activity to trigger

movements within the physical constraints of the body

and its contact with the environment. Therefore, model-

ing motor circuit outputs should include biomechanics.

C. elegans can swim, burrow and crawl. Thus, its motor

circuit is extraordinarily adaptable to the physics of the

environment. In the laboratory, worms typically swim in

water or crawl on agar surfaces, circumstances that already

reveal considerable gait adaptation. The undulation wave-

length of a swimming worm is roughly twice the body length,

generating alternating C-shapes with each ventral or dorsal

muscle contraction. When crawling on a wet surface, they

endure forces that are �10,000-fold larger than water viscos-

ity due to surface tension and friction. Under such a dramatic

increase in external load, they adapt gait by reducing both

undulation frequency (from �2 Hz to �0.2 Hz) and wave-

length (from �2 to �1/2 of the overall length) [72�,81,82].

How can C. elegans respond to such an extreme load

variation with such a modest gait change? To put this feat

in perspective, a person would have to swim with the same

motion in molasses as in water. Biomechanical measure-

ments of the worm body provide some insight. The stiff-

ness of the body is due to both high elastic modulus of its

cuticle (the Young Modulus, E = 10–400 MPa, is compa-

rable to rubber) and internal viscous shear [72�,83,84].

Using measured viscoelasticity, it is possible to estimate

the muscle power that is required to bend the body itself or

to push the body against surroundings. In environments

that pose little resistance (e.g., water), most muscle power

is used to drive the bending of a stiff body. Only when the

viscosity of surroundings increases by �100-fold does the

muscle power needed to push against the environment

begin to compare with the power needed to bend the body.

For over a �10,000-fold increase in environmental viscosi-

ty, the muscle power varies by less than twofold [72�].
Hence, the C. elegans motor circuit operates in low gear,

pushing the animal through high resistance environments,

and exhibiting little acceleration in low resistance envir-

onments.

One of the unique advantages of studying C. elegans is the

opportunity to compare the circuits across the develop-

mental time course, and across the different body plans of

the hermaphrodites, male or dauer larva. Current motor

circuit analysis has mostly been performed in young adult

hermaphrodites. To compare and contrast the motor

circuits and movements of different forms of the same
www.sciencedirect.com
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animal should yield deeper understanding. Laying the

groundwork, biomechanics has been carefully measured

across development, from the L1 larva to the adult [85�].
This was made possible by a versatile micromechanical

device that measures internal viscoelasticity at all size

scales. The worm was found to be self-similar, exhibiting

consistent biomechanical properties throughout develop-

ment. This general property of self-similarity was recent-

ly shown to be able to predict the dynamics of undulatory

waves in the male, by simply applying a biomechanical

model developed for the hermaphrodite to the male’s

more slender body [71��,86]. An open question is how the

physiology and wiring of the motor circuit might also

adapt to the dramatic increase in body size as animals

grow from the L1 larva to the adult, or whether the motor

circuits adapt to behavioral difference between the her-

maphrodite, male, and dauer larvae. Mapping more wir-

ing diagrams will help to answer such questions.

Remaining gaps in basic motor circuit
dynamics
Key questions remain in how motor circuit dynamics is

encoded. Muscles receive excitatory and inhibitory inputs

from motor neurons and convert them to orchestrated

muscle bending via digital output of electrical signals

(action potentials). Multiple AchR and GABAergic recep-

tors of different properties reside and function from both

classes of motor neurons to muscles (Figure 1a). The

enormous diversity of receptor subunits could potentially

endow an intricate network of signaling relationships

throughout the motor circuit, but the physiological prop-

erty difference among different receptor clusters remains

to be defined. How excitatory and inhibitory signaling at

muscles is regulated temporally and spatially to define the

various bending patterns should be better addressed.

Synaptic interconnections between premotor interneurons

likely help the system select and maintain each movement

direction. But AVA/AVE and AVB do not exhibit obvious

reciprocal wiring and how cross-inhibition is achieved is

unresolved. A minimalistic theoretical analysis of the wir-

ing of the motor circuit, based on the effects of systematic

laser ablation of the premotor interneurons on the velocity

and duration of forward and backward movements, pro-

posed that most signaling relationships among premotor

interneurons should be inhibitory [87]. This theory can be

tested experimentally. Current studies suggest that the

interplay between premotor interneurons is likely much

more complex. Cross-inhibition may involve additional

premotor interneurons, such as RIM, that make direct

synaptic connections with both backward promoting

(AVA) and forward promoting (AVB) premotor interneur-

ons. Upon activation, RIM can activate AVA via gap

junctions, and release tyramine to inhibit AVB through a

tyramine-gated chloride channel LGC-55 [61�,88]. It may

also involve inputs from upper layers such as interneuron

AIB [61�] and sensory neuron ASH [75].
www.sciencedirect.com 
Another main gap is identifying the rhythmic generator

(CPGs) for either forward or backward movement. The

progressively decreased anterior–posterior bending wave

led to the prediction of oscillators at the head for both

forward and backward movements, but their identities are

unknown [70]. In the small nervous system of C. elegans,
CPGs might be encoded in single neurons, using net-

works of molecular interactions to auto-regulate mem-

brane potentials. In theory, it is possible to generate

rhythmic activities by endowing neurons with a combi-

nation of stretch-sensitivity and bi-stability, for example,

by triggering membrane potential reversals with each

phase of dorsal and ventral bending [68,69]. Stretch-

sensitivity has been shown to contribute to propagation

of undulatory waves in C. elegans [71��]. Emerging meth-

ods in high-speed pan-neuronal imaging of the C. elegans
nervous system may help to resolve these issues

[89��,90��]. Simultaneous imaging of many neurons

may help to locate the source of rhythmic activities that

are translated into propagating undulatory movements,

and uncover the switch of the neural network states that

accompanies transitions between the motor states.

Conclusions
Much theoretical and experimental work have focused on

how the higher level signal processing allows the chemo-

sensory, thermosensory, and mechanosensory inputs to

trigger motor responses (e.g., [91–95,96�,97,98�,99�]). Un-

derstanding the logic of how the motor circuit generates

and transits between the basic motor patterns in its

repertoire should lay an essential framework for under-

standing how complex behaviors such as tactic navigation

or the escape response are organized. An improved tool-

box is in place to dissect motor circuit activity and

behavior in C. elegans. The worm may yet become the

animal that allows full modeling of complex behaviors

from perception to motion without gaps.
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Schrödel T, Prevedel R, Aumayr K, Zimmer M, Vaziri A: Brain-wide
3D imaging of neuronal activity in Caenorhabditis elegans with
sculpted light. Nat Methods 2013, 10:1013-1020.

90.
��

Prevedel R, Yoon Y-G, Hoffmann M, Pak N, Wetzstein G, Kato S,
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